Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Implement a Bloom Filter | Probabilistic & Streaming Data Structures
Data Structures and Algorithms for Scalable Systems

bookChallenge: Implement a Bloom Filter

Tarea

Swipe to start coding

Implement a BloomFilter class that performs probabilistic membership testing using a bit array and multiple hash functions.

Your implementation must follow these rules:

  • The filter uses a bit array of length size, initialized with zeros.
  • The filter uses exactly hash_count hash functions for each inserted item.
  • The private method _hashes(item) must produce a list of hash_count integer indices, each in the range [0, size).
  • The add(item) method must set all corresponding bits for the item’s hash indices.
  • The contains(item) method returns:
    • True if all bits for the item’s hash indices are set
    • False otherwise
  • The filter may have false positives, but must never produce false negatives (i.e., must never return False for an item that was previously added).

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 5
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

close

bookChallenge: Implement a Bloom Filter

Desliza para mostrar el menú

Tarea

Swipe to start coding

Implement a BloomFilter class that performs probabilistic membership testing using a bit array and multiple hash functions.

Your implementation must follow these rules:

  • The filter uses a bit array of length size, initialized with zeros.
  • The filter uses exactly hash_count hash functions for each inserted item.
  • The private method _hashes(item) must produce a list of hash_count integer indices, each in the range [0, size).
  • The add(item) method must set all corresponding bits for the item’s hash indices.
  • The contains(item) method returns:
    • True if all bits for the item’s hash indices are set
    • False otherwise
  • The filter may have false positives, but must never produce false negatives (i.e., must never return False for an item that was previously added).

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 5
single

single

some-alt