Challenge: Predicting Prices Using Two Features
For this challenge, the same housing dataset will be used. However, now it has two features: age and area of the house (columns 'age' and 'square_feet').
1234import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houseprices.csv') print(df.head())
Your task is to build a Multiple Linear Regression model using the OLS class. Also, you will print the summary table to look at the p-values of each feature.
Swipe to start coding
- Assign the
'age'and'square_feet'columns ofdftoX. - Preprocess the
Xfor theOLS's class constructor. - Build and train the model using the
OLSclass. - Preprocess the
X_newarray the same asX. - Predict the target for
X_new. - Print the model's summary table.
Solución
If you did everything right, you got the p-values close to zero. That means all our features are significant for the model.
¡Gracias por tus comentarios!
single
Pregunte a AI
Pregunte a AI
Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla
Genial!
Completion tasa mejorada a 6.67
Challenge: Predicting Prices Using Two Features
Desliza para mostrar el menú
For this challenge, the same housing dataset will be used. However, now it has two features: age and area of the house (columns 'age' and 'square_feet').
1234import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houseprices.csv') print(df.head())
Your task is to build a Multiple Linear Regression model using the OLS class. Also, you will print the summary table to look at the p-values of each feature.
Swipe to start coding
- Assign the
'age'and'square_feet'columns ofdftoX. - Preprocess the
Xfor theOLS's class constructor. - Build and train the model using the
OLSclass. - Preprocess the
X_newarray the same asX. - Predict the target for
X_new. - Print the model's summary table.
Solución
If you did everything right, you got the p-values close to zero. That means all our features are significant for the model.
¡Gracias por tus comentarios!
single