Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Combinando Tus Conocimientos | Extracción de Datos
Técnicas Avanzadas en Pandas

bookCombinando Tus Conocimientos

Si recuerdas, hace varios capítulos se proporcionó información sobre cómo escribir varias condiciones simultáneamente. Con la instrucción .isin(), puedes aplicar las mismas reglas. Por ejemplo, un ejemplo del capítulo anterior podría verse así:

# The initial example
import pandas as pd
data = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/4bf24830-59ba-4418-969b-aaf8117d522e/cars.csv', index_col = 0)
models = ['HONDA', 'FORD', 'MERCEDES-BENZ', 'HYUNDAI']
data_extracted = data.loc[data['Manufacturer'].isin(models)]
print(data_extracted.head())

# The modified example
import pandas as pd
data = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/4bf24830-59ba-4418-969b-aaf8117d522e/cars.csv', index_col = 0)
models = ['HONDA', 'FORD', 'MERCEDES-BENZ', 'HYUNDAI']
condition = data['Manufacturer'].isin(models)
data_extracted = data.loc[condition]
print(data_extracted.head())

La salida en ambos casos será la misma.

question-icon

La tarea aquí es hacer que los datos cumplan tres condiciones: las categorías de los autos son 'Sedan', 'Jeep', 'Coupe', Y el auto tiene interior de cuero ('Leather_interior' == Yes), Y los tipos de caja de cambios son 'Variator' o 'Automatic'.

import pandas as pd
data = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/4bf24830-59ba-4418-969b-aaf8117d522e/cars.csv', index_col = 0)

categories = ['Sedan', 'Jeep', 'Coupe']
gear_box = ['Variator', 'Automatic']

condition_1 = data['Category'].

(categories)
condition_2 = data['Leather_interior']
'Yes'
condition_3 = data['Gear_box_type'].


data_extracted = data.loc[condition_1
condition_2condition_3]

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 2

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

Awesome!

Completion rate improved to 3.03

bookCombinando Tus Conocimientos

Desliza para mostrar el menú

Si recuerdas, hace varios capítulos se proporcionó información sobre cómo escribir varias condiciones simultáneamente. Con la instrucción .isin(), puedes aplicar las mismas reglas. Por ejemplo, un ejemplo del capítulo anterior podría verse así:

# The initial example
import pandas as pd
data = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/4bf24830-59ba-4418-969b-aaf8117d522e/cars.csv', index_col = 0)
models = ['HONDA', 'FORD', 'MERCEDES-BENZ', 'HYUNDAI']
data_extracted = data.loc[data['Manufacturer'].isin(models)]
print(data_extracted.head())

# The modified example
import pandas as pd
data = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/4bf24830-59ba-4418-969b-aaf8117d522e/cars.csv', index_col = 0)
models = ['HONDA', 'FORD', 'MERCEDES-BENZ', 'HYUNDAI']
condition = data['Manufacturer'].isin(models)
data_extracted = data.loc[condition]
print(data_extracted.head())

La salida en ambos casos será la misma.

question-icon

La tarea aquí es hacer que los datos cumplan tres condiciones: las categorías de los autos son 'Sedan', 'Jeep', 'Coupe', Y el auto tiene interior de cuero ('Leather_interior' == Yes), Y los tipos de caja de cambios son 'Variator' o 'Automatic'.

import pandas as pd
data = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/4bf24830-59ba-4418-969b-aaf8117d522e/cars.csv', index_col = 0)

categories = ['Sedan', 'Jeep', 'Coupe']
gear_box = ['Variator', 'Automatic']

condition_1 = data['Category'].

(categories)
condition_2 = data['Leather_interior']
'Yes'
condition_3 = data['Gear_box_type'].


data_extracted = data.loc[condition_1
condition_2condition_3]

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 2
some-alt