Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Extracting Specific Data | Extracting Data
Advanced Techniques in pandas

book
Extracting Specific Data

Tarea

Swipe to start coding

Your task here is to practice. You need to extract specific data on cars. Follow the algorithm:

  1. Using the.between() method create the condition to extract data on cars where 'Price' is between 15 000(inclusive) and 20 000(exclusive).
  2. Using the .between() method create the condition to extract data on cars where 'Year' is between 2015(exclusive) and 2020(exclusive).
  3. Using the.isin() method create the condition to extract data on such values from 'Fuel_type' column: 'Plug-in Hybrid' and 'Hybrid' (the values are stored in the variable fuel_types).
  4. Unite three conditions using two and statements.

Solución

import pandas as pd

data = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/4bf24830-59ba-4418-969b-aaf8117d522e/cars.csv', index_col = 0)

fuel_types = ['Plug-in Hybrid', 'Hybrid']
# Put the condition on the column 'Price'
condition_1 = data['Price'].between(15000, 20000, inclusive = 'left')
# Put the condition on the column 'Year'
condition_2 = data['Year'].between(2015, 2020, inclusive = 'neither')
# Put the condition on the column 'Fuel_type'
condition_3 = data['Fuel_type'].isin(fuel_types)

# Unite three conditions
data_extracted = data.loc[condition_1 & condition_2 & condition_3]

print(data_extracted.head())

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 4
import pandas as pd

data = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/4bf24830-59ba-4418-969b-aaf8117d522e/cars.csv', index_col = 0)

fuel_types = ['Plug-in Hybrid', 'Hybrid']
# Put the condition on the column 'Price'
condition_1 = data['___'].___(___, 20000, inclusive = '___')
# Put the condition on the column 'Year'
condition_2 = ___['Year'].___(___, ___, inclusive = '___')
# Put the condition on the column 'Fuel_type'
condition_3 = data['Fuel_type'].___

# Unite three conditions
data_extracted = data.___[condition_1 ___ condition_2 ___ condition_3]

print(data_extracted.head())
toggle bottom row
some-alt