Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Grouping in Pandas | Pandas
Unveiling the Power of Data Manipulation with Pandas
course content

Contenido del Curso

Unveiling the Power of Data Manipulation with Pandas

bookGrouping in Pandas

Grouping in pandas involves dividing a DataFrame into groups based on the values in one or more columns. You can then apply a function to each group to compute a summary statistic, such as the mean, sum, or count.

To group a DataFrame in pandas, use the .groupby() method. This method accepts a column name or a list of column names and returns a groupby object.

Here is an example:

This example demonstrates how to calculate the mean for each group formed based on the values in 'column_name'.

Tarea

  1. Group the data DataFrame by 'DEPARTMENT_NAME' and compute the mean, minimum, and maximum of the 'MANAGER_ID' column for each group.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Grouping in pandas involves dividing a DataFrame into groups based on the values in one or more columns. You can then apply a function to each group to compute a summary statistic, such as the mean, sum, or count.

To group a DataFrame in pandas, use the .groupby() method. This method accepts a column name or a list of column names and returns a groupby object.

Here is an example:

This example demonstrates how to calculate the mean for each group formed based on the values in 'column_name'.

Tarea

  1. Group the data DataFrame by 'DEPARTMENT_NAME' and compute the mean, minimum, and maximum of the 'MANAGER_ID' column for each group.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Sección 1. Capítulo 5
some-alt