Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Compute Returns for Multiple Stocks | Financial Data Manipulation with Python
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for Financial Analysts

bookChallenge: Compute Returns for Multiple Stocks

Before you take on the challenge of computing returns for multiple stocks, recall the essentials of financial time series analysis. Calculating simple returns involves measuring the percentage change from one closing price to the next, which helps you assess the day-to-day performance of a stock. Log returns, on the other hand, use the natural logarithm of price ratios and are especially useful for modeling and statistical analysis because they are time-additive and better suited for handling compounding effects. Both return types are fundamental in financial analytics and portfolio management.

1234567891011121314
import pandas as pd import numpy as np # Simulated daily closing prices for 5 stocks over 20 trading days np.random.seed(42) dates = pd.date_range("2023-01-01", periods=20, freq="B") prices = np.cumprod(1 + np.random.normal(0.001, 0.02, (20, 5)), axis=0) * 100 df = pd.DataFrame( prices, index=dates, columns=["AAPL", "MSFT", "GOOGL", "AMZN", "TSLA"] ) print(df.head())
copy

To calculate returns for each stock, you can use the pct_change() method from pandas to get simple returns, and apply the np.log() function to compute log returns. Add each result as a new column in your DataFrame, such as "AAPL_return" for simple returns and "AAPL_log_return" for log returns. This approach lets you compare both metrics side by side for every stock in your dataset.

Tarea

Swipe to start coding

Given a DataFrame with daily closing prices for five stocks, your goal is to compute both simple and log returns for each stock and display the updated DataFrame.

  • For each stock column, calculate the simple return and add it as a new column named with the pattern "<ticker>_return".
  • For each stock column, calculate the log return and add it as a new column named with the pattern "<ticker>_log_return".
  • Display the first five rows of the DataFrame after all new columns are added.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 1. Capítulo 5
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

Suggested prompts:

How do I calculate simple returns for all stocks in the DataFrame?

Can you show me how to compute log returns for each stock?

What is the difference between simple returns and log returns in practice?

close

bookChallenge: Compute Returns for Multiple Stocks

Desliza para mostrar el menú

Before you take on the challenge of computing returns for multiple stocks, recall the essentials of financial time series analysis. Calculating simple returns involves measuring the percentage change from one closing price to the next, which helps you assess the day-to-day performance of a stock. Log returns, on the other hand, use the natural logarithm of price ratios and are especially useful for modeling and statistical analysis because they are time-additive and better suited for handling compounding effects. Both return types are fundamental in financial analytics and portfolio management.

1234567891011121314
import pandas as pd import numpy as np # Simulated daily closing prices for 5 stocks over 20 trading days np.random.seed(42) dates = pd.date_range("2023-01-01", periods=20, freq="B") prices = np.cumprod(1 + np.random.normal(0.001, 0.02, (20, 5)), axis=0) * 100 df = pd.DataFrame( prices, index=dates, columns=["AAPL", "MSFT", "GOOGL", "AMZN", "TSLA"] ) print(df.head())
copy

To calculate returns for each stock, you can use the pct_change() method from pandas to get simple returns, and apply the np.log() function to compute log returns. Add each result as a new column in your DataFrame, such as "AAPL_return" for simple returns and "AAPL_log_return" for log returns. This approach lets you compare both metrics side by side for every stock in your dataset.

Tarea

Swipe to start coding

Given a DataFrame with daily closing prices for five stocks, your goal is to compute both simple and log returns for each stock and display the updated DataFrame.

  • For each stock column, calculate the simple return and add it as a new column named with the pattern "<ticker>_return".
  • For each stock column, calculate the log return and add it as a new column named with the pattern "<ticker>_log_return".
  • Display the first five rows of the DataFrame after all new columns are added.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 1. Capítulo 5
single

single

some-alt