Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Find Similar Drug-like Molecules | Similarity, Clustering and Drug Discovery
Python for Chemoinformatics

bookChallenge: Find Similar Drug-like Molecules

Tarea

Swipe to start coding

Write a function to identify molecules from a list of candidate SMILES strings that are similar to a given reference SMILES, using Tanimoto similarity.

  • Parse the reference_smiles string into an RDKit molecule and generate its Morgan fingerprint with a radius of 2.
  • For each SMILES in candidate_smiles_list, parse it into an RDKit molecule and generate its Morgan fingerprint with a radius of 2.
  • Compute the Tanimoto similarity between the reference fingerprint and each candidate fingerprint.
  • Return a list of SMILES strings for those candidates with similarity strictly greater than 0.7.

Before running this code or the tests, you must install the RDKit library in your environment. If you control the environment, use 'conda install -c conda-forge rdkit' or 'pip install rdkit'. If you do not control the environment, contact the platform support or check their documentation for available packages.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 2
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

Suggested prompts:

Can you explain this in simpler terms?

What are the main takeaways from this?

Can you provide an example to illustrate this?

close

bookChallenge: Find Similar Drug-like Molecules

Desliza para mostrar el menú

Tarea

Swipe to start coding

Write a function to identify molecules from a list of candidate SMILES strings that are similar to a given reference SMILES, using Tanimoto similarity.

  • Parse the reference_smiles string into an RDKit molecule and generate its Morgan fingerprint with a radius of 2.
  • For each SMILES in candidate_smiles_list, parse it into an RDKit molecule and generate its Morgan fingerprint with a radius of 2.
  • Compute the Tanimoto similarity between the reference fingerprint and each candidate fingerprint.
  • Return a list of SMILES strings for those candidates with similarity strictly greater than 0.7.

Before running this code or the tests, you must install the RDKit library in your environment. If you control the environment, use 'conda install -c conda-forge rdkit' or 'pip install rdkit'. If you do not control the environment, contact the platform support or check their documentation for available packages.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 2
single

single

some-alt