Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Build a Simple QSAR Model | Similarity, Clustering and Drug Discovery
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for Chemoinformatics

bookChallenge: Build a Simple QSAR Model

Tarea

Swipe to start coding

Write a Python script that uses RDKit to compute a set of molecular descriptors for a list of SMILES strings, and fits a linear regression model using scikit-learn to predict a property value for each molecule.

  • Use the compute_descriptors function to calculate molecular weight, logP, number of hydrogen bond donors, and number of hydrogen bond acceptors for each molecule.
  • Use the build_qsar_model function to fit a linear regression model using the computed descriptors as features and the provided property values as targets.
  • Ensure that molecules with invalid or unparseable SMILES strings are excluded from the regression model.

Note: Make sure the RDKit library is installed in your Python environment before running this code. You can install RDKit using conda with conda install -c conda-forge rdkit or another compatible method for your system.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 6
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

close

bookChallenge: Build a Simple QSAR Model

Desliza para mostrar el menú

Tarea

Swipe to start coding

Write a Python script that uses RDKit to compute a set of molecular descriptors for a list of SMILES strings, and fits a linear regression model using scikit-learn to predict a property value for each molecule.

  • Use the compute_descriptors function to calculate molecular weight, logP, number of hydrogen bond donors, and number of hydrogen bond acceptors for each molecule.
  • Use the build_qsar_model function to fit a linear regression model using the computed descriptors as features and the provided property values as targets.
  • Ensure that molecules with invalid or unparseable SMILES strings are excluded from the regression model.

Note: Make sure the RDKit library is installed in your Python environment before running this code. You can install RDKit using conda with conda install -c conda-forge rdkit or another compatible method for your system.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 6
single

single

some-alt