Extracting Data from CSV and JSON Files
import pandas as pd
# Read a CSV file and display its contents
df = pd.read_csv("data/sample_data.csv")
print(df.head())
Reading data from CSV files is a common task in data pipelines. You use the read_csv function from the pandas library to load the file into a DataFrame. This function automatically detects the delimiter (default is comma), but you can specify a different delimiter using the delimiter or sep parameter if your file uses something else, such as a tab or semicolon. File encoding is another important aspect; most CSV files use UTF-8 encoding, but you might encounter files with different encodings like ISO-8859-1. You can specify the encoding with the encoding parameter. If you try to read a file with the wrong encoding, you may see errors or garbled text. Error handling is crucial during extraction. The read_csv function provides options like error_bad_lines=False (deprecated in newer pandas versions) or on_bad_lines="skip" to skip problematic rows, and warn_bad_lines=True to display warnings. Always check the documentation for your pandas version to ensure you use the correct parameters.
import pandas as pd
# Read a JSON file with nested structures
df = pd.read_json("data/nested_data.json")
# If the JSON file contains deeply nested data, use json_normalize
if "records" in df.columns:
from pandas import json_normalize
nested_df = json_normalize(df["records"])
print(nested_df.head())
else:
print(df.head())
¡Gracias por tus comentarios!
Pregunte a AI
Pregunte a AI
Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla
What should I do if I encounter encoding errors when reading a CSV file?
How can I handle deeply nested JSON structures more effectively?
Can you explain the difference between `read_csv` and `read_json` in pandas?
Genial!
Completion tasa mejorada a 6.67
Extracting Data from CSV and JSON Files
Desliza para mostrar el menú
import pandas as pd
# Read a CSV file and display its contents
df = pd.read_csv("data/sample_data.csv")
print(df.head())
Reading data from CSV files is a common task in data pipelines. You use the read_csv function from the pandas library to load the file into a DataFrame. This function automatically detects the delimiter (default is comma), but you can specify a different delimiter using the delimiter or sep parameter if your file uses something else, such as a tab or semicolon. File encoding is another important aspect; most CSV files use UTF-8 encoding, but you might encounter files with different encodings like ISO-8859-1. You can specify the encoding with the encoding parameter. If you try to read a file with the wrong encoding, you may see errors or garbled text. Error handling is crucial during extraction. The read_csv function provides options like error_bad_lines=False (deprecated in newer pandas versions) or on_bad_lines="skip" to skip problematic rows, and warn_bad_lines=True to display warnings. Always check the documentation for your pandas version to ensure you use the correct parameters.
import pandas as pd
# Read a JSON file with nested structures
df = pd.read_json("data/nested_data.json")
# If the JSON file contains deeply nested data, use json_normalize
if "records" in df.columns:
from pandas import json_normalize
nested_df = json_normalize(df["records"])
print(nested_df.head())
else:
print(df.head())
¡Gracias por tus comentarios!