Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Extracting Data from CSV and JSON Files | Data Extraction Techniques
Quizzes & Challenges
Quizzes
Challenges
/
Data Pipelines with Python

bookExtracting Data from CSV and JSON Files

12345
import pandas as pd # Read a CSV file and display its contents df = pd.read_csv("data/sample_data.csv") print(df.head())
copy

Reading data from CSV files is a common task in data pipelines. You use the read_csv function from the pandas library to load the file into a DataFrame. This function automatically detects the delimiter (default is comma), but you can specify a different delimiter using the delimiter or sep parameter if your file uses something else, such as a tab or semicolon. File encoding is another important aspect; most CSV files use UTF-8 encoding, but you might encounter files with different encodings like ISO-8859-1. You can specify the encoding with the encoding parameter. If you try to read a file with the wrong encoding, you may see errors or garbled text. Error handling is crucial during extraction. The read_csv function provides options like error_bad_lines=False (deprecated in newer pandas versions) or on_bad_lines="skip" to skip problematic rows, and warn_bad_lines=True to display warnings. Always check the documentation for your pandas version to ensure you use the correct parameters.

123456789101112
import pandas as pd # Read a JSON file with nested structures df = pd.read_json("data/nested_data.json") # If the JSON file contains deeply nested data, use json_normalize if "records" in df.columns: from pandas import json_normalize nested_df = json_normalize(df["records"]) print(nested_df.head()) else: print(df.head())
copy
question mark

Which statements correctly describe how to read CSV and JSON files using pandas

Select the correct answer

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 1

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

Suggested prompts:

How can I handle errors when reading CSV files with pandas?

Can you explain how to specify a different delimiter or encoding in read_csv?

What should I do if my JSON file has multiple levels of nesting?

bookExtracting Data from CSV and JSON Files

Desliza para mostrar el menú

12345
import pandas as pd # Read a CSV file and display its contents df = pd.read_csv("data/sample_data.csv") print(df.head())
copy

Reading data from CSV files is a common task in data pipelines. You use the read_csv function from the pandas library to load the file into a DataFrame. This function automatically detects the delimiter (default is comma), but you can specify a different delimiter using the delimiter or sep parameter if your file uses something else, such as a tab or semicolon. File encoding is another important aspect; most CSV files use UTF-8 encoding, but you might encounter files with different encodings like ISO-8859-1. You can specify the encoding with the encoding parameter. If you try to read a file with the wrong encoding, you may see errors or garbled text. Error handling is crucial during extraction. The read_csv function provides options like error_bad_lines=False (deprecated in newer pandas versions) or on_bad_lines="skip" to skip problematic rows, and warn_bad_lines=True to display warnings. Always check the documentation for your pandas version to ensure you use the correct parameters.

123456789101112
import pandas as pd # Read a JSON file with nested structures df = pd.read_json("data/nested_data.json") # If the JSON file contains deeply nested data, use json_normalize if "records" in df.columns: from pandas import json_normalize nested_df = json_normalize(df["records"]) print(nested_df.head()) else: print(df.head())
copy
question mark

Which statements correctly describe how to read CSV and JSON files using pandas

Select the correct answer

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 1
some-alt