Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Loading Data into Databases and Files | Data Transformation and Loading
Quizzes & Challenges
Quizzes
Challenges
/
Data Pipelines with Python

bookLoading Data into Databases and Files

import pandas as pd
import sqlite3

# Create a sample DataFrame
data = {
    "id": [1, 2, 3],
    "name": ["Alice", "Bob", "Charlie"],
    "score": [85, 92, 78]
}
df = pd.DataFrame(data)

# Connect to SQLite database (or create it)
conn = sqlite3.connect("students.db")

# Write DataFrame to SQLite table named 'students'
df.to_sql("students", conn, if_exists="replace", index=False)

# Close the connection
conn.close()

When loading data into databases or exporting to files, you must consider how your DataFrame's schema maps to the target system. Pay attention to column names and data types—SQLite will infer types from pandas, but mismatches can lead to unexpected results. For file exports, choose the format that best fits your use case: CSV is widely supported and human-readable, while JSON is ideal for nested or hierarchical data. Always check that your data types, encodings, and delimiters align with the requirements of downstream systems or consumers.

import pandas as pd

# Create a sample DataFrame
data = {
    "id": [1, 2, 3],
    "name": ["Alice", "Bob", "Charlie"],
    "score": [85, 92, 78]
}
df = pd.DataFrame(data)

# Export DataFrame to CSV file
df.to_csv("students.csv", index=False)

# Export DataFrame to JSON file
df.to_json("students.json", orient="records", lines=True)

When loading data into databases or exporting to files, you must consider how your DataFrame's schema maps to the target system. Pay attention to column names and data typesSQLite will infer types from pandas, but mismatches can lead to unexpected results. For file exports, choose the format that best fits your use case: CSV is widely supported and human-readable, while JSON is ideal for nested or hierarchical data. Always check that your data types, encodings, and delimiters align with the requirements of downstream systems or consumers.

question mark

What is the best file format choice for exporting a DataFrame when you need a human-readable format?

Select the correct answer

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 3

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

bookLoading Data into Databases and Files

Desliza para mostrar el menú

import pandas as pd
import sqlite3

# Create a sample DataFrame
data = {
    "id": [1, 2, 3],
    "name": ["Alice", "Bob", "Charlie"],
    "score": [85, 92, 78]
}
df = pd.DataFrame(data)

# Connect to SQLite database (or create it)
conn = sqlite3.connect("students.db")

# Write DataFrame to SQLite table named 'students'
df.to_sql("students", conn, if_exists="replace", index=False)

# Close the connection
conn.close()

When loading data into databases or exporting to files, you must consider how your DataFrame's schema maps to the target system. Pay attention to column names and data types—SQLite will infer types from pandas, but mismatches can lead to unexpected results. For file exports, choose the format that best fits your use case: CSV is widely supported and human-readable, while JSON is ideal for nested or hierarchical data. Always check that your data types, encodings, and delimiters align with the requirements of downstream systems or consumers.

import pandas as pd

# Create a sample DataFrame
data = {
    "id": [1, 2, 3],
    "name": ["Alice", "Bob", "Charlie"],
    "score": [85, 92, 78]
}
df = pd.DataFrame(data)

# Export DataFrame to CSV file
df.to_csv("students.csv", index=False)

# Export DataFrame to JSON file
df.to_json("students.json", orient="records", lines=True)

When loading data into databases or exporting to files, you must consider how your DataFrame's schema maps to the target system. Pay attention to column names and data typesSQLite will infer types from pandas, but mismatches can lead to unexpected results. For file exports, choose the format that best fits your use case: CSV is widely supported and human-readable, while JSON is ideal for nested or hierarchical data. Always check that your data types, encodings, and delimiters align with the requirements of downstream systems or consumers.

question mark

What is the best file format choice for exporting a DataFrame when you need a human-readable format?

Select the correct answer

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 3
some-alt