Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Solving Nonlinear Equations | Optimization and Root Finding
Introduction to SciPy

bookChallenge: Solving Nonlinear Equations

In many scientific and engineering applications, you often encounter nonlinear equations that cannot be solved analytically and require numerical methods. The scipy.optimize module provides powerful algorithms to find the roots of such equations, enabling you to model and analyze real-world systems. In this challenge, you will apply your understanding of root-finding by solving a nonlinear equation that represents a physical process using scipy.optimize.root.

Tarea

Swipe to start coding

Solve the nonlinear equation x^3 - 2x^2 + x - 1 = 0 to model a physical process. Use the provided physical_process_equation function for the equation.

  • Use scipy.optimize.root to numerically find a root of the equation, starting from an initial guess of 2.0.
  • Return the root value as a float from the solve_nonlinear_equation function.

Remember to extract the root from the result object using .x[0] and convert it to a float before returning. Make sure your function returns a float, not an array.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 5
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

close

Awesome!

Completion rate improved to 4.17

bookChallenge: Solving Nonlinear Equations

Desliza para mostrar el menú

In many scientific and engineering applications, you often encounter nonlinear equations that cannot be solved analytically and require numerical methods. The scipy.optimize module provides powerful algorithms to find the roots of such equations, enabling you to model and analyze real-world systems. In this challenge, you will apply your understanding of root-finding by solving a nonlinear equation that represents a physical process using scipy.optimize.root.

Tarea

Swipe to start coding

Solve the nonlinear equation x^3 - 2x^2 + x - 1 = 0 to model a physical process. Use the provided physical_process_equation function for the equation.

  • Use scipy.optimize.root to numerically find a root of the equation, starting from an initial guess of 2.0.
  • Return the root value as a float from the solve_nonlinear_equation function.

Remember to extract the root from the result object using .x[0] and convert it to a float before returning. Make sure your function returns a float, not an array.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 5
single

single

some-alt