Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Overlay Operations: Intersection, Union, Difference | Spatial Operations and Map Processing
Geospatial Data Science with Python

bookOverlay Operations: Intersection, Union, Difference

Overlay operations are a core set of tools in geospatial analysis that enable you to combine, compare, and manipulate spatial datasets based on their geometries. These operations—intersection, union, and difference—allow you to answer questions such as "Where do two datasets overlap?", "What is the combined area covered by two layers?", or "What areas are unique to one layer compared to another?" In GIS, overlay operations are essential for tasks like land use analysis, environmental impact studies, and resource management. By leveraging overlay techniques, you can extract new spatial features and attribute information from existing datasets, forming the backbone of many spatial analyses.

123456789101112131415
import geopandas as gpd from shapely.geometry import Polygon # Create two simple polygon GeoDataFrames poly1 = Polygon([(0, 0), (2, 0), (2, 2), (0, 2)]) poly2 = Polygon([(1, 1), (3, 1), (3, 3), (1, 3)]) gdf1 = gpd.GeoDataFrame({'geometry': [poly1]}, crs="EPSG:4326") gdf2 = gpd.GeoDataFrame({'geometry': [poly2]}, crs="EPSG:4326") # Compute the intersection intersection = gpd.overlay(gdf1, gdf2, how='intersection') print("Intersection result:") print(intersection)
copy
12345678910111213141516
import geopandas as gpd from shapely.geometry import Polygon # Define two polygons poly_a = Polygon([(0, 0), (2, 0), (2, 2), (0, 2)]) poly_b = Polygon([(1, 1), (3, 1), (3, 3), (1, 3)]) gdf_a = gpd.GeoDataFrame({'geometry': [poly_a]}, crs="EPSG:4326") gdf_b = gpd.GeoDataFrame({'geometry': [poly_b]}, crs="EPSG:4326") # Perform a union overlay union = gpd.overlay(gdf_a, gdf_b, how='union') print("Union result:") print(union) # The resulting geometry includes all areas covered by either of the input polygons, combining their extents and attributes.
copy
question mark

What is the result of a 'difference' overlay operation?

Select the correct answer

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 4

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

bookOverlay Operations: Intersection, Union, Difference

Desliza para mostrar el menú

Overlay operations are a core set of tools in geospatial analysis that enable you to combine, compare, and manipulate spatial datasets based on their geometries. These operations—intersection, union, and difference—allow you to answer questions such as "Where do two datasets overlap?", "What is the combined area covered by two layers?", or "What areas are unique to one layer compared to another?" In GIS, overlay operations are essential for tasks like land use analysis, environmental impact studies, and resource management. By leveraging overlay techniques, you can extract new spatial features and attribute information from existing datasets, forming the backbone of many spatial analyses.

123456789101112131415
import geopandas as gpd from shapely.geometry import Polygon # Create two simple polygon GeoDataFrames poly1 = Polygon([(0, 0), (2, 0), (2, 2), (0, 2)]) poly2 = Polygon([(1, 1), (3, 1), (3, 3), (1, 3)]) gdf1 = gpd.GeoDataFrame({'geometry': [poly1]}, crs="EPSG:4326") gdf2 = gpd.GeoDataFrame({'geometry': [poly2]}, crs="EPSG:4326") # Compute the intersection intersection = gpd.overlay(gdf1, gdf2, how='intersection') print("Intersection result:") print(intersection)
copy
12345678910111213141516
import geopandas as gpd from shapely.geometry import Polygon # Define two polygons poly_a = Polygon([(0, 0), (2, 0), (2, 2), (0, 2)]) poly_b = Polygon([(1, 1), (3, 1), (3, 3), (1, 3)]) gdf_a = gpd.GeoDataFrame({'geometry': [poly_a]}, crs="EPSG:4326") gdf_b = gpd.GeoDataFrame({'geometry': [poly_b]}, crs="EPSG:4326") # Perform a union overlay union = gpd.overlay(gdf_a, gdf_b, how='union') print("Union result:") print(union) # The resulting geometry includes all areas covered by either of the input polygons, combining their extents and attributes.
copy
question mark

What is the result of a 'difference' overlay operation?

Select the correct answer

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 4
some-alt