Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Grid Search | Manual and Search-Based Tuning Methods
Hyperparameter Tuning Basics

bookChallenge: Grid Search

Tarea

Swipe to start coding

In this challenge, you will apply grid search to automatically find the best hyperparameters for a RandomForestClassifier.

You'll use a noisy two-class dataset generated with make_moons. Your task is to:

  1. Define the parameter grid param_grid:
    • 'n_estimators': [50, 100, 200]
    • 'max_depth': [3, 5, None]
    • 'min_samples_split': [2, 4]
  2. Create a GridSearchCV object using:
    • The model: RandomForestClassifier(random_state=42)
    • The defined grid param_grid
    • cv=5 cross-validation folds
    • 'accuracy' as the scoring metric
  3. Fit the search object on the training data and print:
    • grid_search.best_params_
    • The test accuracy of the best model.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 4
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

Suggested prompts:

Can you explain this in simpler terms?

What are the main takeaways from this?

Can you give me an example?

close

Awesome!

Completion rate improved to 9.09

bookChallenge: Grid Search

Desliza para mostrar el menú

Tarea

Swipe to start coding

In this challenge, you will apply grid search to automatically find the best hyperparameters for a RandomForestClassifier.

You'll use a noisy two-class dataset generated with make_moons. Your task is to:

  1. Define the parameter grid param_grid:
    • 'n_estimators': [50, 100, 200]
    • 'max_depth': [3, 5, None]
    • 'min_samples_split': [2, 4]
  2. Create a GridSearchCV object using:
    • The model: RandomForestClassifier(random_state=42)
    • The defined grid param_grid
    • cv=5 cross-validation folds
    • 'accuracy' as the scoring metric
  3. Fit the search object on the training data and print:
    • grid_search.best_params_
    • The test accuracy of the best model.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 4
single

single

some-alt