Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Removing Characters: Method 2 | Preprocessing Data: Part I
Analyzing and Visualizing Real-World Data

book
Removing Characters: Method 2

As mentioned, there are two ways to remove a character from all column values. The second method uses a lambda function. How does it work? You define a lambda function that removes a certain character/characters from a function variable, and apply it to the selected column. Then you convert obtained values to the necessary type and save them.

Tarea

Swipe to start coding

  1. Define a lambda function with a single argument x that will look for and delete any of the characters '$°C%' from both the left and right sides (using the .strip() method). Assign the function to the rm variable.
  2. Apply the rm function to the 'Fuel_Price' column and then convert it to numerical type (float) using the .astype() method. Assign the obtained result to the same column.
  3. Perform the same actions described in the step 2 for the 'Unemployment' column.
  4. Perform the same actions described in the step 2 for the 'Temperature' column.
  5. Display the first row of the df dataframe and data types of the df dataframe.

Solución

# Load the library
import pandas as pd

# Read the data
df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/72be5dde-f3e6-4c40-8881-e1d97ae31287/shops_data_init.csv')

# Define a lambda function
rm = lambda x: x.strip('$°C%')

# Convert the 'Fuel_Price' column into numerical
df['Fuel_Price'] = df['Fuel_Price'].apply(rm).astype(float)

# Convert the 'Unemployment' column into numerical
df['Unemployment'] = df['Unemployment'].apply(rm).astype(float)

# Convert the 'Temperature' column into numerical
df['Temperature'] = df['Temperature'].apply(rm).astype(float)

# Display the first row of dataframe and dtypes
print(df.head(1))
print(df.dtypes)

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 1. Capítulo 5
# Load the library
import pandas as pd

# Read the data
df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/72be5dde-f3e6-4c40-8881-e1d97ae31287/shops_data_init.csv')

# Define a lambda function
rm = ___ ___: x.___('___')

# Convert the 'Fuel_Price' column into numerical
df['Fuel_Price'] = df['___'].apply(___).___(float)

# Convert the 'Unemployment' column into numerical
df['Unemployment'] = df['Unemployment'].___(___).astype(___)

# Convert the 'Temperature' column into numerical
df['___'] = df['___'].___(rm).astype(___)

# Display the first row of dataframe and dtypes
print(df.___(___))
print(df.___)

Pregunte a AI

expand
ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

some-alt