Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Integrate Dropout and BatchNorm | Regularization Techniques
Optimization and Regularization in Neural Networks with Python

bookChallenge: Integrate Dropout and BatchNorm

Tarea

Swipe to start coding

You will extend a simple neural network by integrating Dropout and Batch Normalization. Your goal is to correctly insert these layers into the architecture and perform a forward pass.

You are given:

  • Input batch x
  • A partially defined network class
  • A forward method missing some components

Complete the following steps:

  1. Add a Dropout layer after the first fully connected layer.

  2. Add a BatchNorm layer immediately after Dropout.

  3. Complete the forward pass so that the data flows through:

    • Linear → ReLU → Dropout → BatchNorm → Linear
  4. Ensure Dropout is used only during training (PyTorch handles this automatically).

After execution, the script prints the network output.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 5
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

Suggested prompts:

Can you explain this in simpler terms?

What are the main benefits or drawbacks?

Can you give me a real-world example?

close

bookChallenge: Integrate Dropout and BatchNorm

Desliza para mostrar el menú

Tarea

Swipe to start coding

You will extend a simple neural network by integrating Dropout and Batch Normalization. Your goal is to correctly insert these layers into the architecture and perform a forward pass.

You are given:

  • Input batch x
  • A partially defined network class
  • A forward method missing some components

Complete the following steps:

  1. Add a Dropout layer after the first fully connected layer.

  2. Add a BatchNorm layer immediately after Dropout.

  3. Complete the forward pass so that the data flows through:

    • Linear → ReLU → Dropout → BatchNorm → Linear
  4. Ensure Dropout is used only during training (PyTorch handles this automatically).

After execution, the script prints the network output.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 5
single

single

some-alt