Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende How Much Do We Earn | Becoming an Analyst
Introduction to Python for Data Analysis
course content

Contenido del Curso

Introduction to Python for Data Analysis

Introduction to Python for Data Analysis

1. Introduction to Python 1/2
2. Introduction to Python 2/2
3. Explore Dataset
4. Becoming an Analyst

book
How Much Do We Earn

You may recognize the column 'money_spent' that corresponds to the amount of money the user spent and gained. In this chapter, we will find if there is any dependence between the day of the week and the amount of money we have!

But firstly, recall some functions:

Group Data:

12
df = df[['columns which we group']] .groupby(['columns on which we group'])
copy

Visualization:

1234
sns.barplot(df = DataFrame, x = 'column for x-axis', y = 'column for y-axis') plt.show()
copy
Tarea

Swipe to start coding

  1. Group data:
  • Extract only columns 'day', 'money_spent' from the df DataFrame.
  • Group by the column 'day'.
  • Apply .mean() function to grouped df.
  • Apply .reset_index() function.
  1. Create a barplot:
  • Use df as the first argument.
  • Use column 'day' for x-axis.
  • Use the column 'money_spent' for the y-axis.
  1. Output barplot.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 4. Capítulo 8
toggle bottom row

book
How Much Do We Earn

You may recognize the column 'money_spent' that corresponds to the amount of money the user spent and gained. In this chapter, we will find if there is any dependence between the day of the week and the amount of money we have!

But firstly, recall some functions:

Group Data:

12
df = df[['columns which we group']] .groupby(['columns on which we group'])
copy

Visualization:

1234
sns.barplot(df = DataFrame, x = 'column for x-axis', y = 'column for y-axis') plt.show()
copy
Tarea

Swipe to start coding

  1. Group data:
  • Extract only columns 'day', 'money_spent' from the df DataFrame.
  • Group by the column 'day'.
  • Apply .mean() function to grouped df.
  • Apply .reset_index() function.
  1. Create a barplot:
  • Use df as the first argument.
  • Use column 'day' for x-axis.
  • Use the column 'money_spent' for the y-axis.
  1. Output barplot.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 4. Capítulo 8
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
We're sorry to hear that something went wrong. What happened?
some-alt