Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
ROI 2/2 | Becoming an Analyst
Introduction to Python for Data Analysis
course content

Contenido del Curso

Introduction to Python for Data Analysis

Introduction to Python for Data Analysis

1. Introduction to Python 1/2
2. Introduction to Python 2/2
3. Explore Dataset
4. Becoming an Analyst

bookROI 2/2

As you can recognize from the previous chapter, we have some problems with ROI in general; we received -19.644756245106056%. Unfortunately, we suffer losses. In this case, we must dive deeper and find the reason.

The next step of our research is to check if we have unprofitable days.

Tarea

  1. Group data:
  • Extract only columns 'day', 'cost', 'money_spent' from the df DataFrame.
  • Group by the column 'day'.
  • Apply sum() function to grouped data.
  • Apply reset_index() function.
  1. Create column 'ROI':
  • Subtract df['cost'] from df['money_spent']
  • Divide the result by df['cost'].

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 4. Capítulo 10
toggle bottom row

bookROI 2/2

As you can recognize from the previous chapter, we have some problems with ROI in general; we received -19.644756245106056%. Unfortunately, we suffer losses. In this case, we must dive deeper and find the reason.

The next step of our research is to check if we have unprofitable days.

Tarea

  1. Group data:
  • Extract only columns 'day', 'cost', 'money_spent' from the df DataFrame.
  • Group by the column 'day'.
  • Apply sum() function to grouped data.
  • Apply reset_index() function.
  1. Create column 'ROI':
  • Subtract df['cost'] from df['money_spent']
  • Divide the result by df['cost'].

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 4. Capítulo 10
toggle bottom row

bookROI 2/2

As you can recognize from the previous chapter, we have some problems with ROI in general; we received -19.644756245106056%. Unfortunately, we suffer losses. In this case, we must dive deeper and find the reason.

The next step of our research is to check if we have unprofitable days.

Tarea

  1. Group data:
  • Extract only columns 'day', 'cost', 'money_spent' from the df DataFrame.
  • Group by the column 'day'.
  • Apply sum() function to grouped data.
  • Apply reset_index() function.
  1. Create column 'ROI':
  • Subtract df['cost'] from df['money_spent']
  • Divide the result by df['cost'].

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

As you can recognize from the previous chapter, we have some problems with ROI in general; we received -19.644756245106056%. Unfortunately, we suffer losses. In this case, we must dive deeper and find the reason.

The next step of our research is to check if we have unprofitable days.

Tarea

  1. Group data:
  • Extract only columns 'day', 'cost', 'money_spent' from the df DataFrame.
  • Group by the column 'day'.
  • Apply sum() function to grouped data.
  • Apply reset_index() function.
  1. Create column 'ROI':
  • Subtract df['cost'] from df['money_spent']
  • Divide the result by df['cost'].

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Sección 4. Capítulo 10
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
some-alt