Operaciones Matriciales en Python
1. Suma y resta
Dos matrices A y B de la misma forma pueden sumarse:
123456789import numpy as np A = np.array([[1, 2], [5, 6]]) B = np.array([[3, 4], [7, 8]]) C = A + B print(f'C:\n{C}') # C = [[4, 6], [12, 14]]
2. Reglas de multiplicación
La multiplicación de matrices no es elemento a elemento.
Regla: si A tiene forma (n,m) y B tiene forma (m,l), entonces el resultado tiene forma (n,l).
1234567891011121314151617181920import numpy as np # Example random matrix 3x2 A = np.array([[1, 2], [3, 4], [5, 6]]) print(f'A:\n{A}') # Example random matrix 2x4 B = np.array([[11, 12, 13, 14], [15, 16, 17, 18]]) print(f'B:\n{B}') # product shape (3, 4) product = np.dot(A, B) print(f'np.dot(A, B):\n{product}') # or equivalently product = A @ B print(f'A @ B:\n{product}')
3. Transposición
La transposición intercambia filas y columnas.
Regla general: si A es (n×m), entonces AT es (m×n).
1234567import numpy as np A = np.array([[1, 2, 3], [4, 5, 6]]) A_T = A.T # Transpose of A print(f'A_T:\n{A_T}')
4. Inversa de una Matriz
Una matriz A tiene una inversa A−1 si:
A⋅A−1=IDonde I es la matriz identidad.
No todas las matrices tienen inversa. Una matriz debe ser cuadrada y de rango completo.
12345678910import numpy as np A = np.array([[1, 2], [3, 4]]) A_inv = np.linalg.inv(A) # Inverse of A print(f'A_inv:\n{A_inv}') I = np.eye(2) # Identity matrix 2x2 print(f'A x A_inv = I:\n{np.allclose(A @ A_inv, I)}') # Check if product equals identity
¡Gracias por tus comentarios!
Pregunte a AI
Pregunte a AI
Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla
Awesome!
Completion rate improved to 1.96
Operaciones Matriciales en Python
Desliza para mostrar el menú
1. Suma y resta
Dos matrices A y B de la misma forma pueden sumarse:
123456789import numpy as np A = np.array([[1, 2], [5, 6]]) B = np.array([[3, 4], [7, 8]]) C = A + B print(f'C:\n{C}') # C = [[4, 6], [12, 14]]
2. Reglas de multiplicación
La multiplicación de matrices no es elemento a elemento.
Regla: si A tiene forma (n,m) y B tiene forma (m,l), entonces el resultado tiene forma (n,l).
1234567891011121314151617181920import numpy as np # Example random matrix 3x2 A = np.array([[1, 2], [3, 4], [5, 6]]) print(f'A:\n{A}') # Example random matrix 2x4 B = np.array([[11, 12, 13, 14], [15, 16, 17, 18]]) print(f'B:\n{B}') # product shape (3, 4) product = np.dot(A, B) print(f'np.dot(A, B):\n{product}') # or equivalently product = A @ B print(f'A @ B:\n{product}')
3. Transposición
La transposición intercambia filas y columnas.
Regla general: si A es (n×m), entonces AT es (m×n).
1234567import numpy as np A = np.array([[1, 2, 3], [4, 5, 6]]) A_T = A.T # Transpose of A print(f'A_T:\n{A_T}')
4. Inversa de una Matriz
Una matriz A tiene una inversa A−1 si:
A⋅A−1=IDonde I es la matriz identidad.
No todas las matrices tienen inversa. Una matriz debe ser cuadrada y de rango completo.
12345678910import numpy as np A = np.array([[1, 2], [3, 4]]) A_inv = np.linalg.inv(A) # Inverse of A print(f'A_inv:\n{A_inv}') I = np.eye(2) # Identity matrix 2x2 print(f'A x A_inv = I:\n{np.allclose(A @ A_inv, I)}') # Check if product equals identity
¡Gracias por tus comentarios!