Contenido del Curso
Desafío de Entrevista en Ciencia de Datos
Desafío de Entrevista en Ciencia de Datos
Reto 1: Visualización de Distribuciones
Comprender cómo se distribuyen los datos es fundamental en el proceso de análisis de datos. Las distribuciones nos ayudan a visualizar las tendencias centrales, la variabilidad y la presencia de valores atípicos en nuestro conjunto de datos. Seaborn, una biblioteca de trazado estadístico construida sobre Matplotlib, proporciona un conjunto de herramientas que facilita la visualización de las distribuciones.
Los diversos gráficos y herramientas de las utilidades de distribución de Seaborn pueden:
- Examinar la distribución de un conjunto de datos.
- Visualizar** la relación entre múltiples variables.
- Mostrar las distribuciones de probabilidad subyacentes de los conjuntos de datos.
El uso de Seaborn para crear gráficos de distribución asegura que el espectador pueda obtener una vista completa de la distribución de los datos y sus características.
Swipe to show code editor
Con Seaborn, visualiza la distribución de un conjunto de datos:
-
- Trace una distribución univariante de datos utilizando un histograma y superpóngalo con una estimación de densidad de kernel (KDE).
-
- Visualice la distribución bivariada entre dos variables utilizando un diagrama de dispersión e incluya un diagrama KDE para ver la densidad de los datos.
¡Gracias por tus comentarios!
Reto 1: Visualización de Distribuciones
Comprender cómo se distribuyen los datos es fundamental en el proceso de análisis de datos. Las distribuciones nos ayudan a visualizar las tendencias centrales, la variabilidad y la presencia de valores atípicos en nuestro conjunto de datos. Seaborn, una biblioteca de trazado estadístico construida sobre Matplotlib, proporciona un conjunto de herramientas que facilita la visualización de las distribuciones.
Los diversos gráficos y herramientas de las utilidades de distribución de Seaborn pueden:
- Examinar la distribución de un conjunto de datos.
- Visualizar** la relación entre múltiples variables.
- Mostrar las distribuciones de probabilidad subyacentes de los conjuntos de datos.
El uso de Seaborn para crear gráficos de distribución asegura que el espectador pueda obtener una vista completa de la distribución de los datos y sus características.
Swipe to show code editor
Con Seaborn, visualiza la distribución de un conjunto de datos:
-
- Trace una distribución univariante de datos utilizando un histograma y superpóngalo con una estimación de densidad de kernel (KDE).
-
- Visualice la distribución bivariada entre dos variables utilizando un diagrama de dispersión e incluya un diagrama KDE para ver la densidad de los datos.
¡Gracias por tus comentarios!
Reto 1: Visualización de Distribuciones
Comprender cómo se distribuyen los datos es fundamental en el proceso de análisis de datos. Las distribuciones nos ayudan a visualizar las tendencias centrales, la variabilidad y la presencia de valores atípicos en nuestro conjunto de datos. Seaborn, una biblioteca de trazado estadístico construida sobre Matplotlib, proporciona un conjunto de herramientas que facilita la visualización de las distribuciones.
Los diversos gráficos y herramientas de las utilidades de distribución de Seaborn pueden:
- Examinar la distribución de un conjunto de datos.
- Visualizar** la relación entre múltiples variables.
- Mostrar las distribuciones de probabilidad subyacentes de los conjuntos de datos.
El uso de Seaborn para crear gráficos de distribución asegura que el espectador pueda obtener una vista completa de la distribución de los datos y sus características.
Swipe to show code editor
Con Seaborn, visualiza la distribución de un conjunto de datos:
-
- Trace una distribución univariante de datos utilizando un histograma y superpóngalo con una estimación de densidad de kernel (KDE).
-
- Visualice la distribución bivariada entre dos variables utilizando un diagrama de dispersión e incluya un diagrama KDE para ver la densidad de los datos.
¡Gracias por tus comentarios!
Comprender cómo se distribuyen los datos es fundamental en el proceso de análisis de datos. Las distribuciones nos ayudan a visualizar las tendencias centrales, la variabilidad y la presencia de valores atípicos en nuestro conjunto de datos. Seaborn, una biblioteca de trazado estadístico construida sobre Matplotlib, proporciona un conjunto de herramientas que facilita la visualización de las distribuciones.
Los diversos gráficos y herramientas de las utilidades de distribución de Seaborn pueden:
- Examinar la distribución de un conjunto de datos.
- Visualizar** la relación entre múltiples variables.
- Mostrar las distribuciones de probabilidad subyacentes de los conjuntos de datos.
El uso de Seaborn para crear gráficos de distribución asegura que el espectador pueda obtener una vista completa de la distribución de los datos y sus características.
Swipe to show code editor
Con Seaborn, visualiza la distribución de un conjunto de datos:
-
- Trace una distribución univariante de datos utilizando un histograma y superpóngalo con una estimación de densidad de kernel (KDE).
-
- Visualice la distribución bivariada entre dos variables utilizando un diagrama de dispersión e incluya un diagrama KDE para ver la densidad de los datos.