Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge: Solving Task Using Stacking Classifier | Commonly Used Stacking Models
Ensemble Learning
course content

Contenido del Curso

Ensemble Learning

Ensemble Learning

1. Basic Principles of Building Ensemble Models
2. Commonly Used Bagging Models
3. Commonly Used Boosting Models
4. Commonly Used Stacking Models

bookChallenge: Solving Task Using Stacking Classifier

Tarea

The 'blood-transfusion-service-center' dataset is a dataset that contains information related to blood donation. It's often used as a binary classification task to predict whether a blood donor will donate blood again. The dataset includes several features that provide insights into the donor's history and characteristics.

Your task is to solve a classification task using the 'blood-transfusion-service-center'` dataset:

  1. Use 3 different LogisticRegression models as base models. Each model must have different regularization parameters: 0.1, 1, and 10, respectively.
  2. Use MLPClassifier as meta-model of an ensemble.
  3. Create a base_models list containing all base models of the ensemble.
  4. Finally, create a StackingClassifier model with specified base models and meta-model.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 4. Capítulo 2
toggle bottom row

bookChallenge: Solving Task Using Stacking Classifier

Tarea

The 'blood-transfusion-service-center' dataset is a dataset that contains information related to blood donation. It's often used as a binary classification task to predict whether a blood donor will donate blood again. The dataset includes several features that provide insights into the donor's history and characteristics.

Your task is to solve a classification task using the 'blood-transfusion-service-center'` dataset:

  1. Use 3 different LogisticRegression models as base models. Each model must have different regularization parameters: 0.1, 1, and 10, respectively.
  2. Use MLPClassifier as meta-model of an ensemble.
  3. Create a base_models list containing all base models of the ensemble.
  4. Finally, create a StackingClassifier model with specified base models and meta-model.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 4. Capítulo 2
toggle bottom row

bookChallenge: Solving Task Using Stacking Classifier

Tarea

The 'blood-transfusion-service-center' dataset is a dataset that contains information related to blood donation. It's often used as a binary classification task to predict whether a blood donor will donate blood again. The dataset includes several features that provide insights into the donor's history and characteristics.

Your task is to solve a classification task using the 'blood-transfusion-service-center'` dataset:

  1. Use 3 different LogisticRegression models as base models. Each model must have different regularization parameters: 0.1, 1, and 10, respectively.
  2. Use MLPClassifier as meta-model of an ensemble.
  3. Create a base_models list containing all base models of the ensemble.
  4. Finally, create a StackingClassifier model with specified base models and meta-model.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Tarea

The 'blood-transfusion-service-center' dataset is a dataset that contains information related to blood donation. It's often used as a binary classification task to predict whether a blood donor will donate blood again. The dataset includes several features that provide insights into the donor's history and characteristics.

Your task is to solve a classification task using the 'blood-transfusion-service-center'` dataset:

  1. Use 3 different LogisticRegression models as base models. Each model must have different regularization parameters: 0.1, 1, and 10, respectively.
  2. Use MLPClassifier as meta-model of an ensemble.
  3. Create a base_models list containing all base models of the ensemble.
  4. Finally, create a StackingClassifier model with specified base models and meta-model.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Sección 4. Capítulo 2
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
some-alt