Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge: Solving Task Using AdaBoost Regressor | Commonly Used Boosting Models
Ensemble Learning
course content

Contenido del Curso

Ensemble Learning

Ensemble Learning

1. Basic Principles of Building Ensemble Models
2. Commonly Used Bagging Models
3. Commonly Used Boosting Models
4. Commonly Used Stacking Models

bookChallenge: Solving Task Using AdaBoost Regressor

AdaBoost Regressor is an ensemble learning algorithm used for regression tasks.

The principle of work of such a regressor coincides with the principle of work of the AdaBoost Classifier. The only difference is that we use some regression algorithms (linear regression, decision tree regressor, polynomial regression, etc.) as a base model.

The AdaBoostRegressor class in Python provides tools to train the model and make predictions.

Tarea

Your task is to create a model to solve the regression task on the diabetes dataset:

  1. Use a simple Linear Regression model as the base model of an ensemble.
  2. Create an AdaBoost Regressor model with the 50 base estimators.
  3. Print MSE to estimate regression quality.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 3
toggle bottom row

bookChallenge: Solving Task Using AdaBoost Regressor

AdaBoost Regressor is an ensemble learning algorithm used for regression tasks.

The principle of work of such a regressor coincides with the principle of work of the AdaBoost Classifier. The only difference is that we use some regression algorithms (linear regression, decision tree regressor, polynomial regression, etc.) as a base model.

The AdaBoostRegressor class in Python provides tools to train the model and make predictions.

Tarea

Your task is to create a model to solve the regression task on the diabetes dataset:

  1. Use a simple Linear Regression model as the base model of an ensemble.
  2. Create an AdaBoost Regressor model with the 50 base estimators.
  3. Print MSE to estimate regression quality.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 3
toggle bottom row

bookChallenge: Solving Task Using AdaBoost Regressor

AdaBoost Regressor is an ensemble learning algorithm used for regression tasks.

The principle of work of such a regressor coincides with the principle of work of the AdaBoost Classifier. The only difference is that we use some regression algorithms (linear regression, decision tree regressor, polynomial regression, etc.) as a base model.

The AdaBoostRegressor class in Python provides tools to train the model and make predictions.

Tarea

Your task is to create a model to solve the regression task on the diabetes dataset:

  1. Use a simple Linear Regression model as the base model of an ensemble.
  2. Create an AdaBoost Regressor model with the 50 base estimators.
  3. Print MSE to estimate regression quality.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

AdaBoost Regressor is an ensemble learning algorithm used for regression tasks.

The principle of work of such a regressor coincides with the principle of work of the AdaBoost Classifier. The only difference is that we use some regression algorithms (linear regression, decision tree regressor, polynomial regression, etc.) as a base model.

The AdaBoostRegressor class in Python provides tools to train the model and make predictions.

Tarea

Your task is to create a model to solve the regression task on the diabetes dataset:

  1. Use a simple Linear Regression model as the base model of an ensemble.
  2. Create an AdaBoost Regressor model with the 50 base estimators.
  3. Print MSE to estimate regression quality.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Sección 3. Capítulo 3
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
some-alt