Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Incident Frequency Visualizer | Data-Driven DevOps Decisions
Python for DevOps Beginners

bookChallenge: Incident Frequency Visualizer

Understanding which types of incidents occur most frequently is crucial for effective DevOps operations. By visualizing incident data, you can quickly identify which areas—such as network, application, or hardware—require the most attention and resources. This challenge will help you practice using Python and seaborn to turn raw incident records into actionable insights, making it easier to prioritize system improvements.

Tarea

Swipe to start coding

Write a function that visualizes the frequency of different incident types using seaborn. The incident data is provided as a hardcoded DataFrame with a single column, incident_type. Your function must:

  • Count the frequency of each unique value in the incident_type column.
  • Create a bar plot using seaborn that displays incident types on the x-axis and their frequencies on the y-axis.
  • Add axis labels and a title to the plot.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 5
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

Suggested prompts:

What are the steps to visualize incident data using Python and seaborn?

Can you provide an example of how to categorize incidents by type?

How can I interpret the results from the incident data visualization?

close

bookChallenge: Incident Frequency Visualizer

Desliza para mostrar el menú

Understanding which types of incidents occur most frequently is crucial for effective DevOps operations. By visualizing incident data, you can quickly identify which areas—such as network, application, or hardware—require the most attention and resources. This challenge will help you practice using Python and seaborn to turn raw incident records into actionable insights, making it easier to prioritize system improvements.

Tarea

Swipe to start coding

Write a function that visualizes the frequency of different incident types using seaborn. The incident data is provided as a hardcoded DataFrame with a single column, incident_type. Your function must:

  • Count the frequency of each unique value in the incident_type column.
  • Create a bar plot using seaborn that displays incident types on the x-axis and their frequencies on the y-axis.
  • Add axis labels and a title to the plot.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 5
single

single

some-alt