Contenido del Curso
Análisis de Series Temporales
Análisis de Series Temporales
Mercados Financieros
El afán por predecir la bolsa empezó probablemente al mismo tiempo que la propia bolsa. Pero como ya sabe, ahora podemos hacer realidad este "sueño" con la ayuda de modelos predictivos.
Los conjuntos de datos con registros bursátiles implican un análisis de tendencias, fluctuaciones cíclicas y estacionalidad. Por ejemplo, los mercados bursátiles tienden a comportarse bien a principios de año, ya que es cuando muchos inversores disponen de capital fresco. Los precios de las acciones pueden subir antes de los puentes y las vacaciones de tres días. Esto se debe únicamente a factores humanos.
Básicamente, para predecir las acciones del mercado se utilizan modelos que trabajan con datos que presentan múltiples estacionalidades. Uno de los modelos más populares es Prophet
, creado por Meta. El modelo matemático es el siguiente
La ecuación incluye los parámetros de tendencia g(t)
, estacionalidad s(t)
, vacaciones h(t)
y ruido e(t)
.
Puedes experimentar con el modelo en Python:
``python from prophet import Prophet
modelo = Prophet() model.fit(df) ```
¡Gracias por tus comentarios!