Contenido del Curso
ML Introduction with scikit-learn
ML Introduction with scikit-learn
1. Machine Learning Concepts
2. Preprocessing Data with Scikit-learn
Putting It All Together
In this challenge, you will apply everything you learned throughout the course. Here are the steps you need to take:
- Remove the rows that hold too little information;
- Encode the
y
; - Split the dataset into training and test sets;
- Build a pipeline with all the preprocessing steps and the
GridSearchCV
as the final estimator to find the best hyperparameters; - Train the model using the pipeline;
- Evaluate the model using the pipeline;
- Predict the target for
X_new
and decode it using theLabelEncoder
's.inverse_transform()
.
Let's get to w̵o̵r̵k̵ code!
Tarea
Swipe to show code editor
- Encode the target using
LabelEncoder
. - Split the data so that 33% is used for a test set and the rest – for a training set.
- Make a
ColumnTransformer
to encode only the'island'
and'sex'
columns. Make the others remain untouched. Use a proper encoder for nominal data. - Fill the gaps in a
param_grid
to try the following values for the number of neighbors:[1, 3, 5, 7, 9, 12, 15, 20, 25]
. - Create a
GridSearchCV
object with theKNeighborsClassifier
as a model. - Make a pipeline with
ct
as a first step andgrid_search
as a final estimator. - Train the model using a pipeline on the training set.
- Evaluate the model on the test set. (Print its score)
- Get a predicted target for
X_test
. - Print the best estimator found by
grid_search
.
Cambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?
¡Gracias por tus comentarios!
Sección 4. Capítulo 10
Putting It All Together
In this challenge, you will apply everything you learned throughout the course. Here are the steps you need to take:
- Remove the rows that hold too little information;
- Encode the
y
; - Split the dataset into training and test sets;
- Build a pipeline with all the preprocessing steps and the
GridSearchCV
as the final estimator to find the best hyperparameters; - Train the model using the pipeline;
- Evaluate the model using the pipeline;
- Predict the target for
X_new
and decode it using theLabelEncoder
's.inverse_transform()
.
Let's get to w̵o̵r̵k̵ code!
Tarea
Swipe to show code editor
- Encode the target using
LabelEncoder
. - Split the data so that 33% is used for a test set and the rest – for a training set.
- Make a
ColumnTransformer
to encode only the'island'
and'sex'
columns. Make the others remain untouched. Use a proper encoder for nominal data. - Fill the gaps in a
param_grid
to try the following values for the number of neighbors:[1, 3, 5, 7, 9, 12, 15, 20, 25]
. - Create a
GridSearchCV
object with theKNeighborsClassifier
as a model. - Make a pipeline with
ct
as a first step andgrid_search
as a final estimator. - Train the model using a pipeline on the training set.
- Evaluate the model on the test set. (Print its score)
- Get a predicted target for
X_test
. - Print the best estimator found by
grid_search
.
Cambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?
¡Gracias por tus comentarios!
Sección 4. Capítulo 10
Cambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones