Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Aggregate Batch Results | Data Manipulation and Analysis for Automation
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for Automation Engineers

bookChallenge: Aggregate Batch Results

Analyzing and summarizing batch process results is a common task in automation, especially when you need to evaluate performance or quality across multiple runs. In this challenge, you will work with a hardcoded pandas DataFrame representing results from several batches. Your goal is to group the data by batch ID, calculate the mean and standard deviation for each batch, and present the findings in a summary DataFrame. This mirrors real-world scenarios where automation engineers need to quickly assess variability and trends across repeated processes.

Tarea

Swipe to start coding

Given a DataFrame with batch process results, create a function that groups the results by batch ID and calculates summary statistics.

  • Group the df DataFrame by the "batch_id" column.
  • For each batch, calculate the mean of the "result" column.
  • For each batch, calculate the standard deviation of the "result" column.
  • Return a new DataFrame with "mean_result" and "std_result" columns, indexed by batch ID.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 5
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

Suggested prompts:

Can you show me the sample DataFrame we should use for this task?

What would the structure of the summary DataFrame look like?

Could you explain how to group by batch ID and calculate mean and standard deviation in pandas?

close

bookChallenge: Aggregate Batch Results

Desliza para mostrar el menú

Analyzing and summarizing batch process results is a common task in automation, especially when you need to evaluate performance or quality across multiple runs. In this challenge, you will work with a hardcoded pandas DataFrame representing results from several batches. Your goal is to group the data by batch ID, calculate the mean and standard deviation for each batch, and present the findings in a summary DataFrame. This mirrors real-world scenarios where automation engineers need to quickly assess variability and trends across repeated processes.

Tarea

Swipe to start coding

Given a DataFrame with batch process results, create a function that groups the results by batch ID and calculates summary statistics.

  • Group the df DataFrame by the "batch_id" column.
  • For each batch, calculate the mean of the "result" column.
  • For each batch, calculate the standard deviation of the "result" column.
  • Return a new DataFrame with "mean_result" and "std_result" columns, indexed by batch ID.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 5
single

single

some-alt