Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge: Implementing Logistic Regression | Logistic Regression
Classification with Python
course content

Contenido del Curso

Classification with Python

Classification with Python

1. k-NN Classifier
2. Logistic Regression
3. Decision Tree
4. Random Forest
5. Comparing Models

bookChallenge: Implementing Logistic Regression

Now let's implement the Logistic Regression in Python!
For this, the LogisticRegression class is used.

Note that by default, Logistic Regression uses the ℓ2 regularization (penalty='l2'). We will talk about regularization in later chapters. For now, we will stick to the default parameters.

The dataset for this chapter is about marketing campaigns based on phone calls from a Portuguese banking institution. The goal is to predict whether the user will subscribe to a term deposit.
The data is already preprocessed and ready to be fed to the model. Following chapters will cover the preprocessing needed for Logistic Regression.

Tarea
test

Swipe to show code editor

Build a Logistic Regression model and calculate the accuracy on the training set.

  1. Import LogisticRegression class.
  2. Create an instance of class LogisticRegression with default parameters and train it.
  3. Print the accuracy on the same X, y dataset.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 3
toggle bottom row

bookChallenge: Implementing Logistic Regression

Now let's implement the Logistic Regression in Python!
For this, the LogisticRegression class is used.

Note that by default, Logistic Regression uses the ℓ2 regularization (penalty='l2'). We will talk about regularization in later chapters. For now, we will stick to the default parameters.

The dataset for this chapter is about marketing campaigns based on phone calls from a Portuguese banking institution. The goal is to predict whether the user will subscribe to a term deposit.
The data is already preprocessed and ready to be fed to the model. Following chapters will cover the preprocessing needed for Logistic Regression.

Tarea
test

Swipe to show code editor

Build a Logistic Regression model and calculate the accuracy on the training set.

  1. Import LogisticRegression class.
  2. Create an instance of class LogisticRegression with default parameters and train it.
  3. Print the accuracy on the same X, y dataset.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 3
toggle bottom row

bookChallenge: Implementing Logistic Regression

Now let's implement the Logistic Regression in Python!
For this, the LogisticRegression class is used.

Note that by default, Logistic Regression uses the ℓ2 regularization (penalty='l2'). We will talk about regularization in later chapters. For now, we will stick to the default parameters.

The dataset for this chapter is about marketing campaigns based on phone calls from a Portuguese banking institution. The goal is to predict whether the user will subscribe to a term deposit.
The data is already preprocessed and ready to be fed to the model. Following chapters will cover the preprocessing needed for Logistic Regression.

Tarea
test

Swipe to show code editor

Build a Logistic Regression model and calculate the accuracy on the training set.

  1. Import LogisticRegression class.
  2. Create an instance of class LogisticRegression with default parameters and train it.
  3. Print the accuracy on the same X, y dataset.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Now let's implement the Logistic Regression in Python!
For this, the LogisticRegression class is used.

Note that by default, Logistic Regression uses the ℓ2 regularization (penalty='l2'). We will talk about regularization in later chapters. For now, we will stick to the default parameters.

The dataset for this chapter is about marketing campaigns based on phone calls from a Portuguese banking institution. The goal is to predict whether the user will subscribe to a term deposit.
The data is already preprocessed and ready to be fed to the model. Following chapters will cover the preprocessing needed for Logistic Regression.

Tarea
test

Swipe to show code editor

Build a Logistic Regression model and calculate the accuracy on the training set.

  1. Import LogisticRegression class.
  2. Create an instance of class LogisticRegression with default parameters and train it.
  3. Print the accuracy on the same X, y dataset.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Sección 2. Capítulo 3
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
We're sorry to hear that something went wrong. What happened?
some-alt