Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Desafío: El Último U-Test | U-Test
El Arte del A/B Testing

book
Desafío: El Último U-Test

Tarea

Swipe to start coding

En esta tarea, debe determinar cuál de las medianas es mayor. Para ello, utilizaremos gráficos de caja.

  1. Defina la métrica.
  2. Construir un box plot.

Solución

# Import libraries
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns

# Read .csv files
df_control = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_control.csv', delimiter=';')
df_test = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_test.csv', delimiter=';')

# Define the metric
df_test['Average Earnings per Click'] = df_test['Earning'] / df_test['Click']
df_control['Average Earnings per Click'] = df_control['Earning'] / df_control['Click']

# Add to the dataframes columns-labels, which mean belonging to either the control or the test group
df_control['group'] = 'Contol group'
df_test['group'] = 'Test group'

# Concat the dataframes and plotting boxplots
df_combined = pd.concat([df_control, df_test])
sns.boxplot(data=df_combined, x='group', y='Average Earnings per Click', palette=['#1e2635', '#ff8a00'],
medianprops={'color': 'red'})

# Sign the axis
plt.xlabel('')
plt.ylabel('Average Earnings per Click')
plt.title('Comparison of AEC')

# Show the results
plt.show()
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 5. Capítulo 6
# Import libraries
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns

# Read .csv files
df_control = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_control.csv', delimiter=';')
df_test = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_test.csv', delimiter=';')

# Define the metric
df_test['Average Earnings per Click'] = df_test['___'] / df_test['___']
df_control['Average Earnings per Click'] = df_control['___'] / df_control['___']

# Add to the dataframes columns-labels, which mean belonging to either the control or the test group
df_control['group'] = 'Contol group'
df_test['group'] = 'Test group'

# Concat the dataframes and plotting boxplots
df_combined = pd.concat([df_control, df_test])
sns.___(data=df_combined, x='group', y='Average Earnings per Click', palette=['#1e2635', '#ff8a00'],
medianprops={'color': 'red'})

# Sign the axis
plt.xlabel('')
plt.ylabel('Average Earnings per Click')
plt.title('Comparison of AEC')

# Show the results
plt.show()
toggle bottom row
some-alt