Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Solving Task Using Binomial Distribution | Commonly Used Discrete Distributions
Probability Theory Basics

Desliza para mostrar el menú

book
Challenge: Solving Task Using Binomial Distribution

Let's consider a task about shooting at a target.
The probability of hitting the target in a single shot is 0.6. We want to calculate the probability of hitting the target 4 times in 10 shots.

We can't solve this task using the classic definition of probability because elementary events of this stochastic experiment have different probabilities of occurring. In addition, we are conducting not one stochastic experiment but ten, and we need to consider the results of all individual experiments.
This stochastic experiment is a Bernoulli trial: we have only two possible outcomes ( shoot and fail to shoot the target).
Shots are independent, so we have a Bernoulli process and can calculate probability using Binomial distribution.

Tarea

Swipe to start coding

You have to calculate the probability of hitting the target 4 times in 10 shots.

Use .pmf() method and specify n and p parameters to calculate the corresponding probability.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 2

Pregunte a AI

expand
ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

book
Challenge: Solving Task Using Binomial Distribution

Let's consider a task about shooting at a target.
The probability of hitting the target in a single shot is 0.6. We want to calculate the probability of hitting the target 4 times in 10 shots.

We can't solve this task using the classic definition of probability because elementary events of this stochastic experiment have different probabilities of occurring. In addition, we are conducting not one stochastic experiment but ten, and we need to consider the results of all individual experiments.
This stochastic experiment is a Bernoulli trial: we have only two possible outcomes ( shoot and fail to shoot the target).
Shots are independent, so we have a Bernoulli process and can calculate probability using Binomial distribution.

Tarea

Swipe to start coding

You have to calculate the probability of hitting the target 4 times in 10 shots.

Use .pmf() method and specify n and p parameters to calculate the corresponding probability.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 2
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Lamentamos que algo salió mal. ¿Qué pasó?
some-alt