Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: ARIMA Forecasting and Evaluation | Implementing ARIMA for Forecasting
Time Series Forecasting with ARIMA

bookChallenge: ARIMA Forecasting and Evaluation

Tarea

Swipe to start coding

You will build, forecast, and evaluate an ARIMA model using the built-in AirPassengers dataset.

Perform the following steps:

  1. Load the dataset flights from seaborn and extract the "passengers" series as a time series indexed by month.

  2. Split the data into:

    • Training set → all data except the last 12 months
    • Testing set → last 12 months
  3. Fit an ARIMA(2,1,2) model on the training set using statsmodels.tsa.arima.model.ARIMA.

  4. Forecast the next 12 months.

  5. Compute and print the following metrics between the forecast and the actual test values:

    • Mean Absolute Error (MAE)
    • Root Mean Squared Error (RMSE)
  6. Plot:

    • The original series
    • The forecasted values over the test range.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 4
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

close

Awesome!

Completion rate improved to 6.67

bookChallenge: ARIMA Forecasting and Evaluation

Desliza para mostrar el menú

Tarea

Swipe to start coding

You will build, forecast, and evaluate an ARIMA model using the built-in AirPassengers dataset.

Perform the following steps:

  1. Load the dataset flights from seaborn and extract the "passengers" series as a time series indexed by month.

  2. Split the data into:

    • Training set → all data except the last 12 months
    • Testing set → last 12 months
  3. Fit an ARIMA(2,1,2) model on the training set using statsmodels.tsa.arima.model.ARIMA.

  4. Forecast the next 12 months.

  5. Compute and print the following metrics between the forecast and the actual test values:

    • Mean Absolute Error (MAE)
    • Root Mean Squared Error (RMSE)
  6. Plot:

    • The original series
    • The forecasted values over the test range.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 4
single

single

some-alt