Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Whitening via Eigenvalue Decomposition | Whitening and Decorrelation
Feature Scaling and Normalization Deep Dive

bookChallenge: Whitening via Eigenvalue Decomposition

Tarea

Swipe to start coding

You are given a dataset X (2D NumPy array) with correlated features. Your goal is to perform feature whitening — transforming the data so that features become uncorrelated and have unit variance, using eigenvalue decomposition of the covariance matrix.

Steps:

  1. Center the data (subtract column means).
  2. Compute the covariance matrix cov_matrix using np.cov(X_centered, rowvar=False).
  3. Perform eigenvalue decomposition with np.linalg.eigh.
  4. Compute a regularized whitening matrix:
    eps = 1e-10
    eig_vals_safe = np.where(eig_vals < eps, eps, eig_vals)
    whitening_matrix = eig_vecs @ np.diag(1.0 / np.sqrt(eig_vals_safe)) @ eig_vecs.T
    
    The eps prevents division by zero for near-zero eigenvalues (rank-deficient data).
  5. Compute the whitened data:
    X_whitened = X_centered @ whitening_matrix
    
  6. Verify that the covariance of X_whitened is close to the identity matrix in the nonzero subspace.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 4
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

close

Awesome!

Completion rate improved to 5.26

bookChallenge: Whitening via Eigenvalue Decomposition

Desliza para mostrar el menú

Tarea

Swipe to start coding

You are given a dataset X (2D NumPy array) with correlated features. Your goal is to perform feature whitening — transforming the data so that features become uncorrelated and have unit variance, using eigenvalue decomposition of the covariance matrix.

Steps:

  1. Center the data (subtract column means).
  2. Compute the covariance matrix cov_matrix using np.cov(X_centered, rowvar=False).
  3. Perform eigenvalue decomposition with np.linalg.eigh.
  4. Compute a regularized whitening matrix:
    eps = 1e-10
    eig_vals_safe = np.where(eig_vals < eps, eps, eig_vals)
    whitening_matrix = eig_vecs @ np.diag(1.0 / np.sqrt(eig_vals_safe)) @ eig_vecs.T
    
    The eps prevents division by zero for near-zero eigenvalues (rank-deficient data).
  5. Compute the whitened data:
    X_whitened = X_centered @ whitening_matrix
    
  6. Verify that the covariance of X_whitened is close to the identity matrix in the nonzero subspace.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 4
single

single

some-alt