Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge: Estimate Parameters of Chi-square Distribution | Estimation of Population Parameters
Advanced Probability Theory
course content

Contenido del Curso

Advanced Probability Theory

Advanced Probability Theory

1. Additional Statements From The Probability Theory
2. The Limit Theorems of Probability Theory
3. Estimation of Population Parameters
4. Testing of Statistical Hypotheses

bookChallenge: Estimate Parameters of Chi-square Distribution

Tarea

Suppose that we have samples from the Chi-square distribution. We must determine the parameter K of this distribution, which represents the number of degrees of freedom.
We know that the mathematical expectation of the Chi-square distributes value is equal to this parameter K.
Estimate this parameter using the method of moments and the maximum likelihood method. Since the number of degrees of freedom can only be discrete, round the resulting number to the nearest integer.
Your task is:

  1. Calculate the mean value over samples using .mean() method.
  2. Use .fit() method to get maximum likelihood estimation for the parameter.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 3
toggle bottom row

bookChallenge: Estimate Parameters of Chi-square Distribution

Tarea

Suppose that we have samples from the Chi-square distribution. We must determine the parameter K of this distribution, which represents the number of degrees of freedom.
We know that the mathematical expectation of the Chi-square distributes value is equal to this parameter K.
Estimate this parameter using the method of moments and the maximum likelihood method. Since the number of degrees of freedom can only be discrete, round the resulting number to the nearest integer.
Your task is:

  1. Calculate the mean value over samples using .mean() method.
  2. Use .fit() method to get maximum likelihood estimation for the parameter.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 3
toggle bottom row

bookChallenge: Estimate Parameters of Chi-square Distribution

Tarea

Suppose that we have samples from the Chi-square distribution. We must determine the parameter K of this distribution, which represents the number of degrees of freedom.
We know that the mathematical expectation of the Chi-square distributes value is equal to this parameter K.
Estimate this parameter using the method of moments and the maximum likelihood method. Since the number of degrees of freedom can only be discrete, round the resulting number to the nearest integer.
Your task is:

  1. Calculate the mean value over samples using .mean() method.
  2. Use .fit() method to get maximum likelihood estimation for the parameter.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Tarea

Suppose that we have samples from the Chi-square distribution. We must determine the parameter K of this distribution, which represents the number of degrees of freedom.
We know that the mathematical expectation of the Chi-square distributes value is equal to this parameter K.
Estimate this parameter using the method of moments and the maximum likelihood method. Since the number of degrees of freedom can only be discrete, round the resulting number to the nearest integer.
Your task is:

  1. Calculate the mean value over samples using .mean() method.
  2. Use .fit() method to get maximum likelihood estimation for the parameter.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Sección 3. Capítulo 3
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
some-alt