Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Right Join | Joining Data
Data Manipulation using pandas
course content

Contenido del Curso

Data Manipulation using pandas

Data Manipulation using pandas

1. Preprocessing Data: Part I
2. Preprocessing Data: Part II
3. Grouping Data
4. Aggregating and Visualizing Data
5. Joining Data

bookRight Join

Another type of join is the right one. This join is literally the same as the left join, but with swapped tables (i.e., to perform a right join of table1 to table2 is literally the same as left join of table2 to table1). To perform a right join, set the how = 'right' parameter.

So both data1.merge(data2, on = 'id', how = 'right') and data2.merge(data1, on = 'id', how = 'left') will return the same result (with changed order of columns).

12345678910
# Importing library import pandas as pd # Loading data data1 = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/f2947b09-5f0d-4ad9-992f-ec0b87cd4b3f/section5/data1.csv') data2 = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/f2947b09-5f0d-4ad9-992f-ec0b87cd4b3f/section5/data2.csv') # Perform a left join df_res = data1.merge(data2, on = 'id', how = 'right') print(df_res)
copy

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 5. Capítulo 3
We're sorry to hear that something went wrong. What happened?
some-alt