Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Implement and Compare Root-Finding Methods | Core Numerical Algorithms
Numerical Methods for Scientific Computing with Python

bookChallenge: Implement and Compare Root-Finding Methods

You will implement two classic numerical methods for finding roots of equations of the form:

f(x)=0f(x) = 0

Because many equations cannot be solved analytically, numerical root-finding methods are widely used in scientific computing and engineering to approximate solutions.

Methods to Implement

Bisection Method

  • Requires an interval ([a,b][a, b]) where the function changes sign.
  • Repeatedly halves the interval to narrow down the root.
  • Guaranteed to converge, but relatively slow compared to other methods.

Newton-Raphson Method

  • Uses the derivative of the function.
  • Starts from an initial guess and iteratively refines the solution.
  • Converges faster, but may fail if the derivative is zero or the initial guess is poor.
Tarea

Swipe to start coding

You must:

  • Implement both root-finding methods.
  • Stop the iteration when: the approximation error is less than or equal to tol or the maximum number of iterations max_iter is reached.
  • Return:
    • The estimated root
    • The number of iterations used to reach the result.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 4
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

close

bookChallenge: Implement and Compare Root-Finding Methods

Desliza para mostrar el menú

You will implement two classic numerical methods for finding roots of equations of the form:

f(x)=0f(x) = 0

Because many equations cannot be solved analytically, numerical root-finding methods are widely used in scientific computing and engineering to approximate solutions.

Methods to Implement

Bisection Method

  • Requires an interval ([a,b][a, b]) where the function changes sign.
  • Repeatedly halves the interval to narrow down the root.
  • Guaranteed to converge, but relatively slow compared to other methods.

Newton-Raphson Method

  • Uses the derivative of the function.
  • Starts from an initial guess and iteratively refines the solution.
  • Converges faster, but may fail if the derivative is zero or the initial guess is poor.
Tarea

Swipe to start coding

You must:

  • Implement both root-finding methods.
  • Stop the iteration when: the approximation error is less than or equal to tol or the maximum number of iterations max_iter is reached.
  • Return:
    • The estimated root
    • The number of iterations used to reach the result.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 4
single

single

some-alt