Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Simulate Random Portfolios | Risk Analysis and Portfolio Management
Python for FinTech

bookChallenge: Simulate Random Portfolios

Monte Carlo simulation is a powerful tool for exploring the possible outcomes of investment portfolios. In portfolio optimization, it is often used to randomly generate many different combinations of asset weights, calculate their expected returns and risks, and analyze which combinations might offer the best trade-off between risk and reward. By simulating a large number of random portfolios, you can visualize the range of achievable returns and risks, and identify efficient portfolios even before using more advanced optimization techniques.

Tarea

Swipe to start coding

Write a function that simulates 100 random portfolios using hardcoded expected returns for three assets. For each portfolio, randomly assign weights to the assets so that the sum of weights equals 1. Calculate the expected return and standard deviation for each portfolio. Store the weights, expected return, and standard deviation for each portfolio in a dictionary, and collect all portfolios in a list. Return the complete list of portfolio dictionaries.

  • Generate 100 portfolios with random weights for three assets, ensuring each set of weights sums to 1.
  • Calculate the expected return for each portfolio using the provided asset returns.
  • Calculate the standard deviation for each portfolio using provided asset standard deviations.
  • Store each portfolio's weights, expected return, and standard deviation in a dictionary.
  • Return a list containing all portfolio dictionaries.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 7
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

close

bookChallenge: Simulate Random Portfolios

Desliza para mostrar el menú

Monte Carlo simulation is a powerful tool for exploring the possible outcomes of investment portfolios. In portfolio optimization, it is often used to randomly generate many different combinations of asset weights, calculate their expected returns and risks, and analyze which combinations might offer the best trade-off between risk and reward. By simulating a large number of random portfolios, you can visualize the range of achievable returns and risks, and identify efficient portfolios even before using more advanced optimization techniques.

Tarea

Swipe to start coding

Write a function that simulates 100 random portfolios using hardcoded expected returns for three assets. For each portfolio, randomly assign weights to the assets so that the sum of weights equals 1. Calculate the expected return and standard deviation for each portfolio. Store the weights, expected return, and standard deviation for each portfolio in a dictionary, and collect all portfolios in a list. Return the complete list of portfolio dictionaries.

  • Generate 100 portfolios with random weights for three assets, ensuring each set of weights sums to 1.
  • Calculate the expected return for each portfolio using the provided asset returns.
  • Calculate the standard deviation for each portfolio using provided asset standard deviations.
  • Store each portfolio's weights, expected return, and standard deviation in a dictionary.
  • Return a list containing all portfolio dictionaries.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 7
single

single

some-alt