Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Regression Metrics | Regression Metrics
Evaluation Metrics in Machine Learning

bookChallenge: Regression Metrics

Tarea

Swipe to start coding

You are given a linear regression task using the diabetes dataset from scikit-learn. Your goal is to train a model, compute key regression evaluation metrics, and validate the model using cross-validation.

Perform the following steps:

  1. Load the diabetes dataset.
  2. Split the data into training and testing sets.
  3. Train a Linear Regression model.
  4. Predict on the test set and compute:
    • Mean Squared Error (MSE)
    • Root Mean Squared Error (RMSE)
    • Mean Absolute Error (MAE)
    • R² Score
  5. Perform 5-fold cross-validation using the model. Use scoring="r2" as the estimator for cross-validation.
  6. Print all metrics in a readable format.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 4
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

Suggested prompts:

Can you explain this in simpler terms?

What are some examples related to this topic?

Where can I learn more about this?

close

Awesome!

Completion rate improved to 6.25

bookChallenge: Regression Metrics

Desliza para mostrar el menú

Tarea

Swipe to start coding

You are given a linear regression task using the diabetes dataset from scikit-learn. Your goal is to train a model, compute key regression evaluation metrics, and validate the model using cross-validation.

Perform the following steps:

  1. Load the diabetes dataset.
  2. Split the data into training and testing sets.
  3. Train a Linear Regression model.
  4. Predict on the test set and compute:
    • Mean Squared Error (MSE)
    • Root Mean Squared Error (RMSE)
    • Mean Absolute Error (MAE)
    • R² Score
  5. Perform 5-fold cross-validation using the model. Use scoring="r2" as the estimator for cross-validation.
  6. Print all metrics in a readable format.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 4
single

single

some-alt