Challenge: Find Outliers in Sales Data
Tehtävä
Swipe to start coding
You will use the 1.5 * IQR rule to detect outliers in a vector of sales figures. Outliers can sometimes signal data entry errors or rare but valid events.
- Calculate the first quartile (
q1) and third quartile (q3) of thesalesvector. - Compute the interquartile range (
iqr) asq3 - q1. - Determine the lower and upper bounds for outliers using the 1.5 * IQR rule.
- Identify the indices and values of any sales figures below the lower bound or above the upper bound.
- Return a list with two elements:
indices(the positions of outliers in the original vector) andvalues(the outlier sales figures).
Ratkaisu
Oliko kaikki selvää?
Kiitos palautteestasi!
Osio 3. Luku 4
single
Kysy tekoälyä
Kysy tekoälyä
Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme
Suggested prompts:
Can you explain this in more detail?
What are the next steps I should take?
Can you provide an example?
Mahtavaa!
Completion arvosana parantunut arvoon 5
Challenge: Find Outliers in Sales Data
Pyyhkäise näyttääksesi valikon
Tehtävä
Swipe to start coding
You will use the 1.5 * IQR rule to detect outliers in a vector of sales figures. Outliers can sometimes signal data entry errors or rare but valid events.
- Calculate the first quartile (
q1) and third quartile (q3) of thesalesvector. - Compute the interquartile range (
iqr) asq3 - q1. - Determine the lower and upper bounds for outliers using the 1.5 * IQR rule.
- Identify the indices and values of any sales figures below the lower bound or above the upper bound.
- Return a list with two elements:
indices(the positions of outliers in the original vector) andvalues(the outlier sales figures).
Ratkaisu
Oliko kaikki selvää?
Kiitos palautteestasi!
Osio 3. Luku 4
single