Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Autoencoder Implementation | VAE implementation
Image Synthesis Through Generative Networks

bookAutoencoder Implementation

Finally, we can bring it all together and create an autoencoder that restores the input image with the highest possible quality.

We will use the MNIST dataset because it is relatively simple, and the training time for our network will not be too long.

Note

You can find the source code via the following Link. If you want to run the code or even change some components, you can copy the notebook and work with the copy.

We can see that our model accurately restores handwritten digits.
However, if we attempt to generate new data using samples from a Gaussian distribution, the images appear smoothed and resemble random, unstructured noise.

To address this issue, we need to regularize our latent space by using a Variational Autoencoder (VAE).

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 3

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

Suggested prompts:

Kysy minulta kysymyksiä tästä aiheesta

Tiivistä tämä luku

Näytä käytännön esimerkkejä

Awesome!

Completion rate improved to 5.26

bookAutoencoder Implementation

Pyyhkäise näyttääksesi valikon

Finally, we can bring it all together and create an autoencoder that restores the input image with the highest possible quality.

We will use the MNIST dataset because it is relatively simple, and the training time for our network will not be too long.

Note

You can find the source code via the following Link. If you want to run the code or even change some components, you can copy the notebook and work with the copy.

We can see that our model accurately restores handwritten digits.
However, if we attempt to generate new data using samples from a Gaussian distribution, the images appear smoothed and resemble random, unstructured noise.

To address this issue, we need to regularize our latent space by using a Variational Autoencoder (VAE).

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 3
some-alt