Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Challenge: LOF in Practice | Density-Based Methods
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Outlier and Novelty Detection in Python

bookChallenge: LOF in Practice

Tehtävä

Swipe to start coding

You are given a 2D dataset with clusters and some outliers. Your task is to apply Local Outlier Factor (LOF) from sklearn.neighbors to identify which samples are locally inconsistent (low-density points).

Steps:

  1. Import and initialize LocalOutlierFactor with n_neighbors=20, contamination=0.1.
  2. Fit the model on X and obtain predictions via .fit_predict(X).
  3. Extract negative outlier factor values (model.negative_outlier_factor_).
  4. Print the number of detected outliers and example scores.

Remember:

  • -1 = outlier;
  • 1 = inlier.

Ratkaisu

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 4. Luku 4
single

single

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

close

bookChallenge: LOF in Practice

Pyyhkäise näyttääksesi valikon

Tehtävä

Swipe to start coding

You are given a 2D dataset with clusters and some outliers. Your task is to apply Local Outlier Factor (LOF) from sklearn.neighbors to identify which samples are locally inconsistent (low-density points).

Steps:

  1. Import and initialize LocalOutlierFactor with n_neighbors=20, contamination=0.1.
  2. Fit the model on X and obtain predictions via .fit_predict(X).
  3. Extract negative outlier factor values (model.negative_outlier_factor_).
  4. Print the number of detected outliers and example scores.

Remember:

  • -1 = outlier;
  • 1 = inlier.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 4. Luku 4
single

single

some-alt