Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Challenge: One-Class SVM for Novelty Detection | Kernel-Based Methods
Outlier and Novelty Detection in Practice

bookChallenge: One-Class SVM for Novelty Detection

Tehtävä

Swipe to start coding

You are given a 2D dataset of normal points and a few anomalies. Your task is to train a One-Class SVM model to detect novelties, visualize prediction results, and print anomaly proportions.

Follow these steps:

  1. Import and initialize OneClassSVM from sklearn.svm.
    • Use kernel='rbf', gamma=0.1, nu=0.05.
  2. Fit the model on normal data only (X_train).
  3. Predict labels for test data (X_test).
    • Label meaning: 1 → normal, -1 → novel/anomalous.
  4. Compute the fraction of anomalies in X_test.
  5. Print:
    • Shapes of train/test sets.
    • Number and fraction of anomalies detected.

Ratkaisu

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 5. Luku 3
single

single

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

Suggested prompts:

Can you explain this in simpler terms?

What are the main takeaways from this?

Can you give me an example?

close

Awesome!

Completion rate improved to 4.55

bookChallenge: One-Class SVM for Novelty Detection

Pyyhkäise näyttääksesi valikon

Tehtävä

Swipe to start coding

You are given a 2D dataset of normal points and a few anomalies. Your task is to train a One-Class SVM model to detect novelties, visualize prediction results, and print anomaly proportions.

Follow these steps:

  1. Import and initialize OneClassSVM from sklearn.svm.
    • Use kernel='rbf', gamma=0.1, nu=0.05.
  2. Fit the model on normal data only (X_train).
  3. Predict labels for test data (X_test).
    • Label meaning: 1 → normal, -1 → novel/anomalous.
  4. Compute the fraction of anomalies in X_test.
  5. Print:
    • Shapes of train/test sets.
    • Number and fraction of anomalies detected.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 5. Luku 3
single

single

some-alt