Challenge: Solving Task Using Regularisation
Swipe to start coding
Your task is to create a classification model using L2 regularization on the breast_cancer
dataset. It contains features computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. The task associated with this dataset is to classify the breast mass as malignant (cancerous) or benign (non-cancerous) based on the extracted features.
Your task is to:
- Specify argument at the
LogisticRegression()
constructor:- specify
penalty
argument equal tol2
; - specify
C
argument equal to1
.
- specify
- Fit regularized model on the training data.
Ratkaisu
Kiitos palautteestasi!
single
Kysy tekoälyä
Kysy tekoälyä
Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme
Awesome!
Completion rate improved to 6.67
Challenge: Solving Task Using Regularisation
Pyyhkäise näyttääksesi valikon
Swipe to start coding
Your task is to create a classification model using L2 regularization on the breast_cancer
dataset. It contains features computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. The task associated with this dataset is to classify the breast mass as malignant (cancerous) or benign (non-cancerous) based on the extracted features.
Your task is to:
- Specify argument at the
LogisticRegression()
constructor:- specify
penalty
argument equal tol2
; - specify
C
argument equal to1
.
- specify
- Fit regularized model on the training data.
Ratkaisu
Kiitos palautteestasi!
Awesome!
Completion rate improved to 6.67single