Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Challenge: Impute Missing Values with Mean | Handling Missing and Duplicate Data
Python for Data Cleaning

bookChallenge: Impute Missing Values with Mean

Mean imputation is a straightforward technique for handling missing values in numerical data. You replace each missing value in a column with the mean of the non-missing values from that same column. This method is most appropriate when the data is missing at random and the distribution of values is not heavily skewed. However, mean imputation can distort the variance and relationships in your data, especially if many values are missing or if the data is not normally distributed. It is important to consider these limitations before choosing mean imputation for your data cleaning workflow.

123456789
import pandas as pd import numpy as np data = { "id": [1, 2, 3, 4, 5], "score": [85, np.nan, 78, np.nan, 92] } df = pd.DataFrame(data) print(df)
copy
Tehtävä

Swipe to start coding

Write a function that fills missing values in a specified numerical column of a DataFrame with the mean of that column. The function must return the modified DataFrame with all missing values in the specified column replaced by the mean of the non-missing values.

Ratkaisu

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 3
single

single

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

Suggested prompts:

How do I perform mean imputation on this DataFrame?

What are the alternatives to mean imputation for missing values?

Can you explain when mean imputation might not be appropriate?

close

Awesome!

Completion rate improved to 5.56

bookChallenge: Impute Missing Values with Mean

Pyyhkäise näyttääksesi valikon

Mean imputation is a straightforward technique for handling missing values in numerical data. You replace each missing value in a column with the mean of the non-missing values from that same column. This method is most appropriate when the data is missing at random and the distribution of values is not heavily skewed. However, mean imputation can distort the variance and relationships in your data, especially if many values are missing or if the data is not normally distributed. It is important to consider these limitations before choosing mean imputation for your data cleaning workflow.

123456789
import pandas as pd import numpy as np data = { "id": [1, 2, 3, 4, 5], "score": [85, np.nan, 78, np.nan, 92] } df = pd.DataFrame(data) print(df)
copy
Tehtävä

Swipe to start coding

Write a function that fills missing values in a specified numerical column of a DataFrame with the mean of that column. The function must return the modified DataFrame with all missing values in the specified column replaced by the mean of the non-missing values.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 3
single

single

some-alt