Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Managing Duplicate Data | Handling Missing and Duplicate Data
Python for Data Cleaning

bookManaging Duplicate Data

Duplicate data is a common issue in real-world datasets. Duplicates can arise for several reasons: manual data entry errors; merging datasets from multiple sources; or system glitches that cause repeated records. The presence of duplicate rows can distort your analysis by inflating counts; skewing statistical summaries; and leading to incorrect conclusions. Removing duplicates is a crucial step to ensure the accuracy and reliability of your data-driven insights.

12345678910111213141516171819
import pandas as pd # Sample DataFrame with duplicate rows data = { "name": ["Alice", "Bob", "Alice", "David", "Bob"], "age": [25, 30, 25, 22, 30], "city": ["New York", "Paris", "New York", "London", "Paris"] } df = pd.DataFrame(data) # Identify duplicate rows duplicates = df.duplicated() print("Duplicated rows:") print(duplicates) # Remove duplicate rows df_no_duplicates = df.drop_duplicates() print("\nDataFrame after removing duplicates:") print(df_no_duplicates)
copy

1. What does the duplicated() method return?

2. How does drop_duplicates() affect the original DataFrame by default?

question mark

What does the duplicated() method return?

Select the correct answer

question mark

How does drop_duplicates() affect the original DataFrame by default?

Select the correct answer

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 2

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

Suggested prompts:

Can you explain how the duplicated() function works in this example?

What if I want to remove duplicates based only on certain columns?

How can I keep the last occurrence of each duplicate instead of the first?

Awesome!

Completion rate improved to 5.56

bookManaging Duplicate Data

Pyyhkäise näyttääksesi valikon

Duplicate data is a common issue in real-world datasets. Duplicates can arise for several reasons: manual data entry errors; merging datasets from multiple sources; or system glitches that cause repeated records. The presence of duplicate rows can distort your analysis by inflating counts; skewing statistical summaries; and leading to incorrect conclusions. Removing duplicates is a crucial step to ensure the accuracy and reliability of your data-driven insights.

12345678910111213141516171819
import pandas as pd # Sample DataFrame with duplicate rows data = { "name": ["Alice", "Bob", "Alice", "David", "Bob"], "age": [25, 30, 25, 22, 30], "city": ["New York", "Paris", "New York", "London", "Paris"] } df = pd.DataFrame(data) # Identify duplicate rows duplicates = df.duplicated() print("Duplicated rows:") print(duplicates) # Remove duplicate rows df_no_duplicates = df.drop_duplicates() print("\nDataFrame after removing duplicates:") print(df_no_duplicates)
copy

1. What does the duplicated() method return?

2. How does drop_duplicates() affect the original DataFrame by default?

question mark

What does the duplicated() method return?

Select the correct answer

question mark

How does drop_duplicates() affect the original DataFrame by default?

Select the correct answer

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 2
some-alt