Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Challenge: Replace Outliers with Median | Ensuring Data Consistency and Correctness
Python for Data Cleaning

bookChallenge: Replace Outliers with Median

Outliers can significantly impact the quality of your data analysis, especially when they arise from errors or rare events that do not reflect typical patterns. When you want to reduce the influence of extreme values while keeping all your data points, replacing outliers with the median of the column is a robust technique. The median is resistant to the effect of outliers, so it provides a stable replacement value that maintains the overall distribution of your data. This approach is especially useful when you want to avoid losing data by removing rows, and when the mean would be skewed by the very outliers you are trying to address.

123456789101112131415161718
import pandas as pd # Example DataFrame with outliers in the 'score' column data = { "name": ["Alice", "Bob", "Charlie", "David", "Eve"], "score": [85, 90, 300, 88, 92] # 300 is an outlier } df = pd.DataFrame(data) # Let's say outliers have been identified using the IQR method # For this example, we know that 300 is an outlier outlier_mask = df["score"] > 150 print("Original DataFrame:") print(df) print("\nOutlier mask:") print(outlier_mask)
copy
Tehtävä

Swipe to start coding

Write a function that replaces outlier values in a specified column of a DataFrame with the median value of that column. Use a boolean mask to identify which values are outliers. The function must update the DataFrame in place so that all outlier values in the specified column are replaced with the column's median.

Ratkaisu

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 3. Luku 6
single

single

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

close

Awesome!

Completion rate improved to 5.56

bookChallenge: Replace Outliers with Median

Pyyhkäise näyttääksesi valikon

Outliers can significantly impact the quality of your data analysis, especially when they arise from errors or rare events that do not reflect typical patterns. When you want to reduce the influence of extreme values while keeping all your data points, replacing outliers with the median of the column is a robust technique. The median is resistant to the effect of outliers, so it provides a stable replacement value that maintains the overall distribution of your data. This approach is especially useful when you want to avoid losing data by removing rows, and when the mean would be skewed by the very outliers you are trying to address.

123456789101112131415161718
import pandas as pd # Example DataFrame with outliers in the 'score' column data = { "name": ["Alice", "Bob", "Charlie", "David", "Eve"], "score": [85, 90, 300, 88, 92] # 300 is an outlier } df = pd.DataFrame(data) # Let's say outliers have been identified using the IQR method # For this example, we know that 300 is an outlier outlier_mask = df["score"] > 150 print("Original DataFrame:") print(df) print("\nOutlier mask:") print(outlier_mask)
copy
Tehtävä

Swipe to start coding

Write a function that replaces outlier values in a specified column of a DataFrame with the median value of that column. Use a boolean mask to identify which values are outliers. The function must update the DataFrame in place so that all outlier values in the specified column are replaced with the column's median.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 3. Luku 6
single

single

some-alt