Challenge: Implement Particle Swarm Optimization
Swipe to start coding
You are asked to implement the core update logic for a Particle Swarm Optimization (PSO) algorithm. The goal is to find the minimum of the function f(x) = x² + 5 * sin(x) on the interval [-10, 10].
All the parameters (like inertia w, cognitive c1, and social c2) and initial lists (positions, velocities, pbest_positions, pbest_values, gbest_position, gbest_value) are already set up for you.
Your task is to fill in the main iterative process:
- Inside the inner
forloop (for each particlei), you must first update the particle's velocity. Use the full PSO velocity update equation:w * velocities[i] + c1 * r1 * (pbest_positions[i] - positions[i]) + c2 * r2 * (gbest_position - positions[i]). - Update the particle's position by adding its new
velocities[i]topositions[i]. - After calculating the new
valueatpositions[i], check if this newvalueis better than the particle's personal best (pbest_values[i]). If it is, you must update bothpbest_positions[i]andpbest_values[i]. - After the inner loop (which updates all particles), check if the new best personal value (which you find and store in
min_value) is better than the current global best (gbest_value). If it is, update bothgbest_valueandgbest_position.
Ratkaisu
Kiitos palautteestasi!
single
Kysy tekoälyä
Kysy tekoälyä
Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme
Can you explain this in simpler terms?
What are some examples related to this topic?
How does this information apply to real-life situations?
Awesome!
Completion rate improved to 6.25
Challenge: Implement Particle Swarm Optimization
Pyyhkäise näyttääksesi valikon
Swipe to start coding
You are asked to implement the core update logic for a Particle Swarm Optimization (PSO) algorithm. The goal is to find the minimum of the function f(x) = x² + 5 * sin(x) on the interval [-10, 10].
All the parameters (like inertia w, cognitive c1, and social c2) and initial lists (positions, velocities, pbest_positions, pbest_values, gbest_position, gbest_value) are already set up for you.
Your task is to fill in the main iterative process:
- Inside the inner
forloop (for each particlei), you must first update the particle's velocity. Use the full PSO velocity update equation:w * velocities[i] + c1 * r1 * (pbest_positions[i] - positions[i]) + c2 * r2 * (gbest_position - positions[i]). - Update the particle's position by adding its new
velocities[i]topositions[i]. - After calculating the new
valueatpositions[i], check if this newvalueis better than the particle's personal best (pbest_values[i]). If it is, you must update bothpbest_positions[i]andpbest_values[i]. - After the inner loop (which updates all particles), check if the new best personal value (which you find and store in
min_value) is better than the current global best (gbest_value). If it is, update bothgbest_valueandgbest_position.
Ratkaisu
Kiitos palautteestasi!
single