Challenge: Boosting
Tehtävä
Swipe to start coding
Your task is to train and evaluate two boosting models — AdaBoost and Gradient Boosting — on the Breast Cancer dataset.
Follow these steps:
- Load the dataset using
load_breast_cancer()fromsklearn.datasets. - Split the data into training and testing sets (
test_size=0.3,random_state=42). - Train:
- An AdaBoostClassifier with:
base_estimator=DecisionTreeClassifier(max_depth=1)n_estimators=50,learning_rate=0.8
- A GradientBoostingClassifier with:
n_estimators=100,learning_rate=0.1,max_depth=3.
- An AdaBoostClassifier with:
- Evaluate both models on the test data using
accuracy_score. - Print both accuracies.
Ratkaisu
Oliko kaikki selvää?
Kiitos palautteestasi!
Osio 1. Luku 11
single
Kysy tekoälyä
Kysy tekoälyä
Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme
Mahtavaa!
Completion arvosana parantunut arvoon 7.14
Challenge: Boosting
Pyyhkäise näyttääksesi valikon
Tehtävä
Swipe to start coding
Your task is to train and evaluate two boosting models — AdaBoost and Gradient Boosting — on the Breast Cancer dataset.
Follow these steps:
- Load the dataset using
load_breast_cancer()fromsklearn.datasets. - Split the data into training and testing sets (
test_size=0.3,random_state=42). - Train:
- An AdaBoostClassifier with:
base_estimator=DecisionTreeClassifier(max_depth=1)n_estimators=50,learning_rate=0.8
- A GradientBoostingClassifier with:
n_estimators=100,learning_rate=0.1,max_depth=3.
- An AdaBoostClassifier with:
- Evaluate both models on the test data using
accuracy_score. - Print both accuracies.
Ratkaisu
Oliko kaikki selvää?
Kiitos palautteestasi!
Osio 1. Luku 11
single