Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Challenge: Identify Outlier Test Durations | Analyzing and Visualizing Test Data
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for QA Engineers

bookChallenge: Identify Outlier Test Durations

Spotting outlier test durations is a vital skill for QA engineers, as it helps you quickly identify problematic tests that may be slowing down your pipeline or masking deeper issues. Outliers among failed tests can signal flaky tests, infrastructure hiccups, or code regressions that deserve immediate attention. In this challenge, you will use a hardcoded pandas DataFrame representing test cases, each with a duration and status, and apply seaborn to visualize the distribution of test durations. Your goal is to highlight any outliers among the failed tests, making it easier to prioritize investigation and continuous improvement of your test suite.

Tehtävä

Swipe to start coding

Implement a function to plot test durations and highlight outliers among failed tests using seaborn.

  • The function must plot the distribution of test durations for each test status using seaborn.
  • Outliers in the durations, especially among failed tests, must be visually highlighted in the plot.
  • The function must use the provided DataFrame as input.

Ratkaisu

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 7
single

single

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

Suggested prompts:

Can you show me the sample DataFrame structure for the test cases?

How do I use seaborn to visualize outliers among failed tests?

What steps should I follow to highlight outliers in the plot?

close

bookChallenge: Identify Outlier Test Durations

Pyyhkäise näyttääksesi valikon

Spotting outlier test durations is a vital skill for QA engineers, as it helps you quickly identify problematic tests that may be slowing down your pipeline or masking deeper issues. Outliers among failed tests can signal flaky tests, infrastructure hiccups, or code regressions that deserve immediate attention. In this challenge, you will use a hardcoded pandas DataFrame representing test cases, each with a duration and status, and apply seaborn to visualize the distribution of test durations. Your goal is to highlight any outliers among the failed tests, making it easier to prioritize investigation and continuous improvement of your test suite.

Tehtävä

Swipe to start coding

Implement a function to plot test durations and highlight outliers among failed tests using seaborn.

  • The function must plot the distribution of test durations for each test status using seaborn.
  • Outliers in the durations, especially among failed tests, must be visually highlighted in the plot.
  • The function must use the provided DataFrame as input.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 7
single

single

some-alt