Challenge: Evaluating the Model
In this challenge, you are given the good old housing dataset, but this time only with the 'age' feature.
1234import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') print(df.head())
Next, we'll create a scatterplot for this data:
12345678import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') X = df['age'] y = df['price'] plt.scatter(X, y, alpha=0.4) plt.show()
A straight line is a poor fit here: prices rise for both very new and very old houses. A parabola models this trend better — that’s what you will build in this challenge.
But before you start, recall the PolynomialFeatures class.
fit_transform(X) needs a 2-D array or DataFrame. Use df[['col']] or, for a 1-D array, apply .reshape(-1, 1) to convert it into 2-D.
The task is to build a Polynomial Regression of degree 2 using PolynomialFeatures and OLS.
Swipe to start coding
- Assign the
Xvariable to a DataFrame containing column'age'. - Create an
X_tildematrix using thePolynomialFeaturesclass. - Build and train a Polynomial Regression model.
- Reshape
X_newto be a 2-D array. - Preprocess
X_newthe same way asX. - Print the model's parameters.
Ratkaisu
Kiitos palautteestasi!
single
Kysy tekoälyä
Kysy tekoälyä
Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme
Mahtavaa!
Completion arvosana parantunut arvoon 6.67
Challenge: Evaluating the Model
Pyyhkäise näyttääksesi valikon
In this challenge, you are given the good old housing dataset, but this time only with the 'age' feature.
1234import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') print(df.head())
Next, we'll create a scatterplot for this data:
12345678import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') X = df['age'] y = df['price'] plt.scatter(X, y, alpha=0.4) plt.show()
A straight line is a poor fit here: prices rise for both very new and very old houses. A parabola models this trend better — that’s what you will build in this challenge.
But before you start, recall the PolynomialFeatures class.
fit_transform(X) needs a 2-D array or DataFrame. Use df[['col']] or, for a 1-D array, apply .reshape(-1, 1) to convert it into 2-D.
The task is to build a Polynomial Regression of degree 2 using PolynomialFeatures and OLS.
Swipe to start coding
- Assign the
Xvariable to a DataFrame containing column'age'. - Create an
X_tildematrix using thePolynomialFeaturesclass. - Build and train a Polynomial Regression model.
- Reshape
X_newto be a 2-D array. - Preprocess
X_newthe same way asX. - Print the model's parameters.
Ratkaisu
Kiitos palautteestasi!
single