Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele LLM Tweet Generation Loop | ODT:n Muuttaminen Visuaaliseksi Työnkuluksi
Tekoälyautomaatio Työnkulut n8n:llä

bookLLM Tweet Generation Loop

Process each RSS item into a single tweet by following a simple, repeatable flow: normalized RSS → Loop Over Items (batch = 1) → AI tweet → Airtable row. This approach keeps the workflow minimal, reliable, and easy to scale. Instead of sending large arrays to the LLM, you feed one clean article at a time for precise, consistent results.

  • RSS item: already cleaned or normalized;
  • Loop Over Items (Split in Batches): batch size = 1;
  • AI Agent: generates one tweet;
  • Airtable → Create Record: stores the tweet;

This approach ensures predictable outputs, easier debugging, and lets you stop or restart mid-run without disrupting the entire workflow.

Note
Note

If you see duplicates (similar headlines), dedupe upstream by GUID/title or filter before the loop. If Airtable rejects writes, re-check table/field names and types.

You can now turn any normalized RSS feed into tweets that post reliably, store them in Airtable with source tracking, and safely resume without duplicates. By adjusting one system message, you control tone and length, keeping the workflow scalable and rate-limit friendly.

question mark

What's the main benefit of storing each tweet with its source GUID in Airtable?

Select the correct answer

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 4. Luku 3

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

Awesome!

Completion rate improved to 4.17

bookLLM Tweet Generation Loop

Pyyhkäise näyttääksesi valikon

Process each RSS item into a single tweet by following a simple, repeatable flow: normalized RSS → Loop Over Items (batch = 1) → AI tweet → Airtable row. This approach keeps the workflow minimal, reliable, and easy to scale. Instead of sending large arrays to the LLM, you feed one clean article at a time for precise, consistent results.

  • RSS item: already cleaned or normalized;
  • Loop Over Items (Split in Batches): batch size = 1;
  • AI Agent: generates one tweet;
  • Airtable → Create Record: stores the tweet;

This approach ensures predictable outputs, easier debugging, and lets you stop or restart mid-run without disrupting the entire workflow.

Note
Note

If you see duplicates (similar headlines), dedupe upstream by GUID/title or filter before the loop. If Airtable rejects writes, re-check table/field names and types.

You can now turn any normalized RSS feed into tweets that post reliably, store them in Airtable with source tracking, and safely resume without duplicates. By adjusting one system message, you control tone and length, keeping the workflow scalable and rate-limit friendly.

question mark

What's the main benefit of storing each tweet with its source GUID in Airtable?

Select the correct answer

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 4. Luku 3
some-alt