Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Challenge: Find Similar Drug-like Molecules | Similarity, Clustering and Drug Discovery
Python for Chemoinformatics

bookChallenge: Find Similar Drug-like Molecules

Tehtävä

Swipe to start coding

Write a function to identify molecules from a list of candidate SMILES strings that are similar to a given reference SMILES, using Tanimoto similarity.

  • Parse the reference_smiles string into an RDKit molecule and generate its Morgan fingerprint with a radius of 2.
  • For each SMILES in candidate_smiles_list, parse it into an RDKit molecule and generate its Morgan fingerprint with a radius of 2.
  • Compute the Tanimoto similarity between the reference fingerprint and each candidate fingerprint.
  • Return a list of SMILES strings for those candidates with similarity strictly greater than 0.7.

Before running this code or the tests, you must install the RDKit library in your environment. If you control the environment, use 'conda install -c conda-forge rdkit' or 'pip install rdkit'. If you do not control the environment, contact the platform support or check their documentation for available packages.

Ratkaisu

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 2
single

single

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

Suggested prompts:

Can you explain this in simpler terms?

What are the main takeaways from this?

Can you provide an example to illustrate this?

close

bookChallenge: Find Similar Drug-like Molecules

Pyyhkäise näyttääksesi valikon

Tehtävä

Swipe to start coding

Write a function to identify molecules from a list of candidate SMILES strings that are similar to a given reference SMILES, using Tanimoto similarity.

  • Parse the reference_smiles string into an RDKit molecule and generate its Morgan fingerprint with a radius of 2.
  • For each SMILES in candidate_smiles_list, parse it into an RDKit molecule and generate its Morgan fingerprint with a radius of 2.
  • Compute the Tanimoto similarity between the reference fingerprint and each candidate fingerprint.
  • Return a list of SMILES strings for those candidates with similarity strictly greater than 0.7.

Before running this code or the tests, you must install the RDKit library in your environment. If you control the environment, use 'conda install -c conda-forge rdkit' or 'pip install rdkit'. If you do not control the environment, contact the platform support or check their documentation for available packages.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 2
single

single

some-alt