Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Challenge: Cluster a Compound Library | Similarity, Clustering and Drug Discovery
Python for Chemoinformatics

bookChallenge: Cluster a Compound Library

Tehtävä

Swipe to start coding

Write a Python function using RDKit that takes a list of SMILES strings and groups them into clusters based on pairwise Tanimoto similarity. Each cluster should contain molecules where every member has a Tanimoto similarity above 0.6 with at least one other member in the cluster.

  • Parse each SMILES string into an RDKit molecule.
  • Generate Morgan fingerprints for each molecule.
  • Compare fingerprints pairwise using Tanimoto similarity.
  • Group molecules so that each cluster contains molecules with at least one similarity above 0.6 to another member.
  • Return a list of clusters, where each cluster is a list of SMILES strings.

Ratkaisu

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 4
single

single

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

Suggested prompts:

Can you explain this in simpler terms?

What are the main benefits or drawbacks?

Can you give me a real-world example?

close

bookChallenge: Cluster a Compound Library

Pyyhkäise näyttääksesi valikon

Tehtävä

Swipe to start coding

Write a Python function using RDKit that takes a list of SMILES strings and groups them into clusters based on pairwise Tanimoto similarity. Each cluster should contain molecules where every member has a Tanimoto similarity above 0.6 with at least one other member in the cluster.

  • Parse each SMILES string into an RDKit molecule.
  • Generate Morgan fingerprints for each molecule.
  • Compare fingerprints pairwise using Tanimoto similarity.
  • Group molecules so that each cluster contains molecules with at least one similarity above 0.6 to another member.
  • Return a list of clusters, where each cluster is a list of SMILES strings.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 4
single

single

some-alt